Return to search

Few-cycle OPCPA laser chain / Chaine laser à base d’OPCPA pour des impulsions de peu de cycles optiques

La chaîne laser Apollon 10PW est un projet de grande envergure visant à fournir des impulsions de 10 PW et atteindre des intensités sur cibles de 10^22 W/cm^2. Dans l’état de l'art actuel, les lasers à dérive de fréquence (CPA) de haute intensité à base de cristaux titane saphir (Ti:Sa), sont limités à des puissances de crête de 1,3 PW pour des impulsions de 30-fs, en raison du rétrécissement spectral par gain dans les amplificateurs. Pour accéder au régime multipetawatt, le rétrécissement de gain doit être évité. Pour cela une technique alternative d’amplification appelée amplification paramétrique optique d'impulsions à dérive de fréquence (OPCPA) est utilisée. Elle offre la possibilité d’amplifier sur des très larges bandes spectrales de gain et d’accéder à des durées d'impulsion aussi courtes que 10 fs. Le laser Appolon 10 PW exploite une technologie hybride d’OPCPA et de Ti:Sa-CPA pour atteindre in fine des impulsions de 15 fs avec une énergie de 150 J. L’OPCPA est réalisé essentiellement sur les étages d'amplification de basse énergie et de très fort gain (ou le rétrécissement par le gain se fait le plus ressentir), ceci pour obtenir des impulsions de 100 mJ, 10 fs. Deux étages OPCPA sont préus ; le premier en régime picoseconde, le second en régime nanoseconde, et subséquemment on utilisera le Ti:Sa pour l'amplification de très haute énergie pour atteindre le régime multi-Joule.Les travaux de cette thèse porte sur le pilote OPCPA du laser Apollon-10 PW et se concentre sur le développement d’une source d’impulsions ultra-courtes avec un contraste élevé. Pour atteindre l’objectif final de 15 fs, 150 J, le pilote doit permettre l’obtention d’impulsions dont le spectre supporte des durées de 10 fs, ceci avec un contraste temporel d'au moins 10^10. Dans cette thèse nous nous intéressons à la mise en œuvre des premiers étages du pilote. Ce travail concerne les étages de compression, de nettoyage d’impulsions et d’amplification OPCPA en régime picoseconde. Ainsi, en partant d'une source commerciale Ti:Sa délivrant des impulsions de 25-fs avec un contraste de 10^8, nous réalisons tout d’abord un élargissement spectral par auto-modulation de phase et une amélioration du contraste par génération de polarisation croisée (XPW). Ensuite, nous nous intéressons aux différents étireurs ps possibles incluant un filtre dispersif programmable (dazzler) en vue d’injecter l’OPCPA picoseconde de manière optimale. La solution directe utilisant un bloc de verre BK7 a été retenue et son association avec un compresseur compact pour le diagnostique de la compressibilité a été étudiée. Enfin, l’amplificateur OPCPA ps a été mis en œuvre dans des configurations à simple et double étages. / The Apollon-10 PW laser chain is a large-scale project aimed at delivering 10 PW pulses to reach intensities of 10^22 W/cm^2. State of the art, high intensity lasers based solely on chirped pulse amplification (CPA) and titanium sapphire (Ti:Sa) crystals are limited to peak powers reaching 1.3 PW with 30-fs pulses as a result of gain narrowing in the amplifiers. To access the multipetawatt regime, gain narrowing can be suppressed with an alternative amplification technique called optical parametric chirped pulse amplification (OPCPA), offering a broader gain bandwidth and pulse durations as short as 10 fs. The Apollon-10 PW laser will exploit a hybrid OPCPA-Ti:Sa-CPA strategy to attain 10-PW pulses with 150 J and 15 fs. It will have two high-gain, low-energy amplification stages (10 fs ,100 mJ range) based on OPCPA in the picosecond and nanosecond timescale and afterwards, and will use Ti:Sa for power amplification to the 100-Joule level.Work in this thesis involves the progression of the development on the Apollon-10 PW front end and is focused on the development of a high contrast, ultrashort seed source supporting 10-fs pulses, stretching these pulses prior to OPCPA and the implementation of the picosecond OPCPA stage with a target of achieving 10-mJ pulses and maintaining its bandwidth. To achieve the final goal of 15-fs, 150-J pulses, the seed source must have a bandwidth supporting 10-fs and a temporal contrast of at least 10^10. Thus from an initial commercial Ti:Sa source delivering 25-fs pulses with a contrast of 10^8, spectral broadening via self-phase modulation and contrast enhancement with cross polarized (XPW) generation was performed. Subsequently, the seed pulses were stretched to a few picoseconds to match the pump for picosecond OPCPA. Strecher designs using an acousto-optic programmable dispersive filter (dazzler) for phase control in this purpose are studied. A compact and straightforward compressor using BK7 glass is used and an associated compressor for pulse monitoring was also studied. Lastly, the picosecond OPCPA stage was implemented in single and dual stage configurations.

Identiferoai:union.ndltd.org:theses.fr/2013PA112012
Date29 March 2013
CreatorsRamirez, Lourdes Patricia
ContributorsParis 11, Druon, Frédéric
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds