Return to search

Amyloid-β Protofibril Formation and Neurotoxicity : Implications for Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common cause of dementia. A characteristic feature of AD is the presence of amyloid plaques in the cortex and hippocampus of the brain. The principal component of these plaques is the amyloid-β (Aβ) peptide, a cleavage product from proteolytic processing of amyloid precursor protein (APP). A central event in AD pathogenesis is the ability of Aβ monomers to aggregate into amyloid fibrils. This process involves the formation of various Aβ intermediates, including protofibrils. Protofibrils have been implicated in familial AD, as the Arctic APP mutation is associated with enhanced rate of protofibril formation in vitro. This thesis focuses on Aβ aggregation and neurotoxicity in vitro, with special emphasis on protofibril formation. Using synthetic Aβ peptides with and without the Arctic mutation, we demonstrated that the Arctic mutation accelerated both Aβ1-42 protofibril- and fibril formation, and that these processes were affected by changes in the physiochemical environment. Oxidation of Aβ methionine delayed trimer and protofibril formation in vitro. Interestingly, these oxidized peptides did not have the neurotoxic potential of their un-oxidized counterparts, suggesting that formation of trimers and further aggregation into protofibrils is necessary for the neurotoxic actions of Aβ. In agreement, stabilization of Aβ wild type protofibrils with the omega-3 (ω3) fatty acid docosahexaenoic acid (DHA) sustained Aβ induced neurotoxicity; whereas in absence of DHA, neurotoxicity was reduced as Aβ fibrils were formed. These results suggest that the neurotoxic potential of Aβ is mainly confined to soluble aggregated forms of Aβ, not Aβ monomer/dimers or fibrillar Aβ. Stabilization of Aβ protofibrils with DHA might seem contradictory, as ω3 fatty acids generally are considered beneficial for cognition. However, we also demonstrated that DHA supplementation reduced Aβ levels in cell models of AD, providing a possible mechanism for the reported beneficial effects of DHA on cognitive measures in vivo.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-7718
Date January 2007
CreatorsJohansson, Ann-Sofi
PublisherUppsala universitet, Institutionen för folkhälso- och vårdvetenskap, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 239

Page generated in 0.0024 seconds