Nos tempos atuais, as imagens médicas são fonte de dados fundamentais na medicina moderna. As imagens armazenadas em uma base de dados de acordo com as respectivas categorias são um importante passo para aplicações como mineração de dados e recuperação de imagens por conteúdo. Estas aplicações podem apoiar médicos e estudantes na decisão de diagnóstico, permitir pesquisas e ser usadas como material didático. O trabalho propõe o uso de Mapas Auto-Organizáveis (SOM) e TransformadaWavelet combinada com momentos de Hu para a categorização de imagens médicas. Para tanto, são realizados experimentos para definição do tamanho do mapa SOM, uso do mesmo na categorização, definição da melhor família wavelet e nível de decomposição, sumarização dos coeficientes wavelets descartados por momento de Hu e experimentos comparativos com outras abordagens de categorização. Além dos experimentos de classificação comparativos em termos de taxa de acerto, é apresentada uma proposta de contribuição para uso do Mapa SOM na classificação. Nesta proposta, os resultados de classificação e o tempo de recurso computacional despendido pelo Mapa SOM mostram-se eficientes, quando comparados aos resultados e tempo apresentados pelo tradicional classificador K vizinhos mais próximos. / Nowadays, images are fundamental data source in modern medicine. The images stored in a database according with categories are an important step for data mining and contentbased image retrieval. They can support doctors and students in diagnostic decisions and provide research and didactic material. This work addresses the use of Self-Organizing Map (SOM) and discrete wavelet transform joint with Hus moments to medical image categorization. Furthermore, extensive experiments to define map size were done, employing the map in categorization, the best wavelet family and level of decomposition were defined, the coefficient discarded was summarized by Hus moments and contrastive studies with another successfull approach of categorization were done. Moreover, an approach to use SOM map in categorization is addressed, in which the SOM map for classification carried on better performance and computational time than traditional K nearest neighbor algorithm.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-02062009-160937 |
Date | 25 March 2009 |
Creators | Silva, Leandro Augusto da |
Contributors | Del Moral Hernandez, Emilio |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0022 seconds