Return to search

Redes neurais em análise de sobrevivência: Uma aplicação na área de relacionamento com clientes / Redes neurais em análise de sobrevivência: Uma aplicação na área de relacionamento com clientes

A medida que as economias modernas tornam-se predominantemente baseadas na prestação de serviços, as companhias aumentam seu valor na criação e na sustentabilidade do relacionamento a longo prazo com seus clientes. O \"Customer Lifetime Value (LTV)\", que é uma medida de potencial de geração de lucro, ou valor de um cliente, vem sendo considerado um ponto fundamental para o gerenciamento da relação com os clientes. O principal desafio em prever o LTV é a produção de estimativas para o tempo de duração do contrato de um cliente com um dado provedor de serviços, baseado nas informações contidas no banco de dados da companhia. Neste trabalho, apresentaremos uma alternativa aos modelos estatísticos clássicos, utilizando um modelo de redes neurais para a previsão da taxa de cancelamento a partir do banco de dados de uma empresa de TV por assinatura. / A medida que as economias modernas tornam-se predominantemente baseadas na prestação de serviços, as companhias aumentam seu valor na criação e na sustentabilidade do relacionamento a longo prazo com seus clientes. O \"Customer Lifetime Value (LTV)\", que é uma medida de potencial de geração de lucro, ou valor de um cliente, vem sendo considerado um ponto fundamental para o gerenciamento da relação com os clientes. O principal desafio em prever o LTV é a produção de estimativas para o tempo de duração do contrato de um cliente com um dado provedor de serviços, baseado nas informações contidas no banco de dados da companhia. Neste trabalho, apresentaremos uma alternativa aos modelos estatísticos clássicos, utilizando um modelo de redes neurais para a previsão da taxa de cancelamento a partir do banco de dados de uma empresa de TV por assinatura.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-26082007-225003
Date04 June 2007
CreatorsMarcelo Hiroshi Ogava
ContributorsAntonio Carlos Pedroso de Lima, Lucia Pereira Barroso, Manoel Raimundo de Sena Junior
PublisherUniversidade de São Paulo, Estatística, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds