Return to search

Energy estimates and variance estimation for hyperbolic stochastic partial differentialequations

In this thesis the connections between the boundary conditions and the vari- ance of the solution to a stochastic partial differential equation (PDE) are investigated. In particular a hyperbolical system of PDE’s with stochastic initial and boundary data are considered. The problem is shown to be well- posed on a class of boundary conditions through the energy method. Stability is shown by using summation-by-part operators coupled with simultaneous- approximation-terms. By using the energy estimates, the relative variance of the solutions for different boundary conditions are analyzed. It is concluded that some types of boundary conditions yields a lower variance than others. This is verified by numerical computations.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-70355
Date January 2011
CreatorsArndt, Carl-Fredrik
PublisherLinköpings universitet, Beräkningsvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds