Rubber friction is an important aspect to tire engineers, material developers and pavement engineers because of its importance in the estimation of forces generated at the contact, which further helps in optimizing tire and vehicle performances, and to estimate tire wear. It mainly depends on the material properties, contact mechanics and operating condition. There are two major contributions to rubber friction, due to repeated viscoelastic deformation from undulations of surface called hysteresis and due to Vander Waals interaction of the molecules called adhesion. The study focuses on analytical modeling of friction for stationary sliding of rubber block on rough surfaces. Two novel approaches are discussed and compared. Frictional shear stress is obtained from the energy dissipated at the contact interface due to the elastic deformations of rubber block at different length scales. Contact mechanics theories based on continuity approach combined with stochastic processes to estimate the real contact area, mean penetration depth and true stresses at contact depending on operating conditions. Rubber properties are highly temperature dependent. Temperature model developed based on heat diffusion relation is integrated to consider the effects of temperature rise due to frictional heating.
Model results are validated with theoretical results of literature. Simulation results of friction model is obtained for Compound A sliding on rough surface. Material properties are obtained using Dynamic Mechanical Analysis and Time temperature superposition. Influence of the friction models under different conditions are discussed. Model results are validated with experimental data from Dynamic friction tester on a 120-grit surface followed by future works. / Master of Science / Friction is a complex phenomenon that occurs in all tribological application. It is termed as the ratio of the shear force resisting the motion of the component to the normal force acting on the component. Microscopic observation has observed the importance of the effective contact area and roughness of the substrates in the influence of the friction.
Rubber friction is an important aspect to tire engineers, material developers and pavement engineers because of its importance in the estimation of forces generated at the contact, which further helps in optimizing tire and vehicle performances, and to estimate tire wear. Because of the viscoelastic nature of rubber, the friction in rubber is much more complicated than observed for elastic materials and hence depends on the material properties apart from contact mechanics and operating condition. There are two major contributions to rubber friction, due to repeated viscoelastic deformation from undulations of surface called hysteresis and due to Vander Waals interaction of the molecules called adhesion. The study focuses on analytical modeling of friction for stationary sliding of rubber block on rough surfaces. Two novel approaches are discussed and compared. Frictional shear stress is obtained from the energy dissipated at the contact interface due to the elastic deformations of rubber block at different length scales. Contact mechanics theories based on continuity approach combined with stochastic processes to estimate the real contact area, mean penetration depth and true stresses at contact depending on operating conditions. Rubber properties are highly temperature dependent. Temperature model developed based on heat diffusion relation is integrated to consider the effects of temperature rise due to frictional heating.
Model results are validated with theoretical results of literature. Simulation results of friction model is obtained for Compound A sliding on rough surface. Material properties are obtained using Dynamic Mechanical Analysis and Time temperature superposition. Influence of the friction models under different conditions are discussed. Model results are validated with experimental data from Dynamic friction tester on a 120-grit surface followed by future works.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/79596 |
Date | 25 April 2017 |
Creators | Vadakkeveetil, Sunish |
Contributors | Mechanical Engineering, Taheri, Saied, Sandu, Corina, Ferris, John B. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Thesis, Text |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0016 seconds