Return to search

Multi-Length Scale Modeling of Rubber Tribology For Tire Application

Tire, or in its primitive form, Wheel, an important invention for the transportation sector, has evolved from a circular block of hard and durable material to one of the most complex and influential components of an automobile. It is the only means of contact between the vehicle and the road and is responsible for generating forces and moments that impact vehicle performance, stability, and control. Tire tribology is the study of interacting surfaces in relative motion which includes friction and wear. Tire friction is an essential concept for estimating the tractive effort/ traction at the tire-road interface that further helps to determine the control and stability of the vehicle. In contrary, it also results in rolling resistance and wear. Tire and vehicle engineers are henceforth interested in a robust and efficient approach towards estimation of friction and wear.

Past experimental observations using tread compound samples have revealed the different factors influencing the friction at the contacting interface. In addition, different mechanisms or components resulting in frictional losses, being Hysteretic, Adhesive and Viscous, and wear being abrasive, fatigue, adhesive and corrosive were also observed. Although experimental and empirical observations have provided us with an accurate estimation of friction and wear parameters, it is very tedious and expensive approach. Recent developments in the computational power encouraged researchers and engineers towards evolution of analytical and numerical models considering the underlying physical mechanisms at the contact interface.

Past research studies developed multiscale techniques for estimation of friction coefficient due to hysteretic losses from internal damping of the rubber material because of oscillation from surface undulations. Later, contact mechanics models developed using Hertzian technique or stochastic approach were considered in conjunction with frictional losses to obtain the hysteretic component of friction to consider the effect of surface roughness. Previous studies at CenTiRe focused on surface characterization techniques and estimation of friction for dry surfaces using Persson and Klüppel's approach. Comparative studies unveiled the importance of considering pressure/ normal load towards friction estimation. In addition, it was found that effect of adhesion for estimation of contact mechanics parameters must be considered.

The present work focusses on obtaining a conceptual framework to model a comprehensive friction model considering the effect of surface roughness, substrate condition and asperity interaction. A finite element simulation of rubber block sliding on a rough substrate is performed using a multiscale technique for estimation of friction and contact mechanics under dry condition. The estimated contact mechanics and friction is compared with analytical models and experimental measurements obtained using Linear sliding friction tester developed in collaboration with other members of the group. In addition, a FE model is developed to measure the wear properties of rubber material based on continuum damage mechanics and further obtain the wear profile of a rubber block sliding on a rough substrate. / Doctor of Philosophy / Tribology, a recent terminology for an age-old concept of friction, wear, and lubrication. the study of interacting surfaces in relative motion which includes friction and wear. Friction is the resisting force at the contact interface leading to heat build-up and material loss at the contact interface which is known as flash temperature and wear respectively. Tire is one of the most complex and influential components of a vehicle that helps in optimizing its performance for better stability and control. Knowledge of tire friction and wear is important for tire engineering and vehicle dynamics engineers as it helps in characterizing the handling characteristics of the vehicle, characterizing the tire material compounds to understand the tire durability.

Rubber is a viscoelastic material, the friction and wear in rubber is intricate as opposed to other elastic materials. Based on experimental observations in the past, friction and wear are influenced by factors like material properties, normal load/ pressure, sliding velocity, temperature, surface characteristics, and environmental conditions. In addition, the frictional losses at the contact interface are considered to compose of adhesion, hysteresis and viscous components and wear is categorized as – adhesive, abrasive, fatigue, corrosive and erosive. Recent developments in computational power encouraged researchers and engineers in developing analytical and computational models that consider the physical mechanisms occurring at the contact interface.

The present research focuses on obtaining a comprehensive friction and contact mechanics model considering the effect of surface roughness at different length scales, surface condition (dry/ wet) and asperity interaction. In addition, the developed model in conjunction with a brush model is considered for estimating the tire traction characteristics such as the forces and moments. A finite element simulation of rubber block sliding on a rough substrate is performed using a multiscale technique for estimation of friction, contact mechanics and abrasion parameters under dry condition. The results thus obtained are compared with the analytical model that is developed for wet conditions. Experimental validation of the friction estimated using the analytical and numerical methods will be performed using a linear sliding friction tester developed in collaboration with other members of the group.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/103030
Date22 October 2019
CreatorsVadakkeveetil, Sunish
ContributorsMechanical Engineering, Taheri, Saied, Ferris, John B., Shakiba, Maryam, Sandu, Corina, Warhadpande, Anurag
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0027 seconds