The evolution of structured data from simple rows and columns on a spreadsheet to more complex unstructured data such as tweets, videos, voice, and others, has resulted in a need for more adaptive analytical platforms. It is estimated that upwards of 80% of data on the Internet today is unstructured. There is a drastic need for crowdsourcing platforms to perform better in the wake of the tsunami of data. We investigated the employment of a monitoring service which would allow the system take corrective action in the event the results were trending in away from meeting the accuracy, budget, and time SLOs. Initial implementation and system validation has shown that taking corrective action generally leads to a better success rate of reaching the SLOs. Having a system which can dynamically adjust internal parameters in order to perform better can lead to more harmonious interactions between humans and machine algorithms and lead to more efficient use of resources.
Identifer | oai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:theses-3249 |
Date | 01 December 2017 |
Creators | Flatt, Taylor |
Publisher | OpenSIUC |
Source Sets | Southern Illinois University Carbondale |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses |
Page generated in 0.0017 seconds