Return to search

Subcellular distribution of lipid metabolising enzymes in human skeletal muscle

In obesity, lipids stored in muscle as lipid droplets (LDs) lead to accumulation of fatty acid (FA) metabolites and insulin resistance. This research involves development of immunofluorescence microscopy methods to generate novel information on the subcellular content and distribution of key enzymes that play a role in the underlying mechanisms. Chapters 3 and 4 describe visualisation of two lipid synthesising enzymes. Both are more abundant in type I muscle fibres. Chapter 5 reveals no differences between these enzymes in non obese and obese elderly women. Chapter 6 reveals that a key lipolytic enzyme (ATGL) has a higher content in type I fibres, but its activator does not. Chapter 7 describes visualisation of SNAP23 and reveals a high content at the plasma membrane and mitochondria and low content in LDs. Chapter 8 fails to observe a difference between obese and non obese elderly women in plasma membrane SNAP23, and therefore fails to confirm the hypothesis that LDs hijack SNAP23. However, obese women have less SNAP23 in mitochondria and this may limit FA oxidation. In conclusion this thesis describes several novel mechanisms by which obesity leads to accumulation of FA metabolites and insulin resistance. The developed methods will be a valuable novel tool for future diabetes research.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:556870
Date January 2012
CreatorsClark, Juliette A.
PublisherUniversity of Birmingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.bham.ac.uk//id/eprint/3378/

Page generated in 0.0018 seconds