Return to search

Test Case Generation Using Combinatorial Based Coverage for Rich Web Applications

Web applications are increasingly moving business and processing logic from the server to the browser. Traditional, multiple-page request/response applications are quickly being replaced by single-page applications where complex application logic is downloaded on the initial page load and data is then subsequently fetched asynchronously via the browser's native XMLHttpRequest (XHR) object.
These new generation web applications are called Rich Web Applications (RWA). Frameworks such as the Google Web Toolkit (GWT), and JavaScript model-view-controller (MVC) frameworks such as Backbone.js are facilitating this move. With this migration, testing frameworks need to follow the logic by moving analysis and test generation from the server to the client. One problem hindering the movement of testing in this domain is the adoption of semantic URLs. This paper introduces a novel approach to systematically identify variables in semantic URLs and use them as part of the test generation process.
Using a sample RWA seeded with various JavaScript faults, I demonstrate in this thesis, as an empirical study, that combinatorial testing algorithms and reduction strategies also apply to new RWAs.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2402
Date01 May 2012
CreatorsMaughan, Chad
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0021 seconds