Return to search

An approximate dynamic programming approach to discrete optimization

Thesis (Ph.D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2000. / Includes bibliographical references (leaves 181-189). / We develop Approximate Dynamic Programming (ADP) methods to integer programming problems. We describe and investigate parametric, nonparametric and base-heuristic learning approaches to approximate the value function in order to break the curse of dimensionality. Through an extensive computational study we illustrate that our ADP approach to integer programming competes successfully with existing methodologies including state of art commercial packages like CPLEX. Our benchmarks for comparison are solution quality, running time and robustness (i.e., small deviations in the computational resources such as running time for varying instances of same size). In this thesis, we particularly focus on knapsack problems and the binary integer programming problem. We explore an integrated approach to solve discrete optimization problems by unifying optimization techniques with statistical learning. Overall, this research illustrates that the ADP is a promising technique by providing near-optimal solutions within reasonable amount of computation time especially for large scale problems with thousands of variables and constraints. Thus, Approximate Dynamic Programming can be considered as a new alternative to existing approximate methods for discrete optimization problems. / by Ramazan Demir. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/9137
Date January 2000
CreatorsDemir, Ramazan
ContributorsDimitris J. Bertsimas., Massachusetts Institute of Technology. Operations Research Center., Massachusetts Institute of Technology. Operations Research Center.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format189 leaves, 12858495 bytes, 12858250 bytes, application/pdf, application/pdf, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0012 seconds