Regulation of gene expression occurs at several levels in a cell. While control of transcription is often viewed as the main source of regulation, it is now clear that post-transcriptional processes are essential to fine-tune protein availability. The presence of AU-rich elements (ARE) in the 3’ untranslated region (3’UTR) of many important mRNAs exemplifies one such process. AREs alter the mRNA translation or degradation status by recruiting ARE-binding proteins (ARE-BP). ARE-BPs of the TTP/TIS11 family bind to their cognate ARE-RNAs using their conserved tandem zinc-finger domain and induce rapid decay of their targets. This allows for proper regulation of cell proliferation, cell death and inflammation. In this regard, TTP/TIS11 are main regulators of gene expression, and as such are put under strict transcriptional, post-transcriptional as well as several layers of post-translational control.<p>In this work, we aimed at elucidating the degradation mechanisms affecting TTP/TIS11. Using Drosophila as a model, we found that dTIS11 protein turnover is rapid due to continuous degradation by the proteasome. However, proteasomal recognition did not require ubiquitination of dTIS11 as non-ubiquitinable mutants were efficiently degraded by the proteasome. In addition, dTIS11 was digested by the 20S proteasome that lacks ubiquitin-recognition domains. Our results further indicate that intrinsically disordered regions (IDR) in dTIS11 may be responsible for proteasomal recognition. In fact, dTIS11 is predicted as disordered and possesses the main characteristics of intrinsically disordered proteins (IDP). We also identified dTIS11 N- and C-terminal domains as functional signals for degradation, potentially due to their destructuration. This ubiquitination-independent, disorder-dependent degradation process is conserved throughout evolution as dTIS11 mammalian counterpart, TTP, undergoes the same degradation by default pathway. In addition, we established that phosphorylation prevents degradation of TTP/TIS11 by the proteasome. <p>Together, our results pinpoint a new essential characteristic for TTP/TIS11 that may redefine the identity of these proteins. In addition, we unraveled a novel and conserved mechanism of regulation of TTP/TIS11. This control is essential for cell physiology as defects in this process can lead to defects in the inflammatory response, increased radiation-induced lung toxicity and tumorigenesis.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/209239 |
Date | 25 September 2014 |
Creators | Vo Ngoc, Long |
Contributors | Gueydan, Cyril, Kruys, Véronique, Vanhamme, Luc, Tompa, Peter, Bousbata, Sabrina, Andris, Fabienne, Raussens, Vincent, Marini, Anna Maria |
Publisher | Universite Libre de Bruxelles, Université libre de Bruxelles, Faculté des Sciences – Sciences biologiques, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | 1 v., No full-text files |
Page generated in 0.0065 seconds