Return to search

Selection during Early Life Stages and Local Adaptation in Arabidopsis thaliana

Organisms are often adapted to their local environment, but the role of early life stages in adaptive differentiation among populations remains poorly known. The aim of my thesis was to investigate the contribution of early life stages to the magnitude and genetic basis of local adaptation, and to identify the underlying adaptive traits. For this, I used two natural populations of the annual plant Arabidopsis thaliana from Italy and Sweden, and a Recombinant Inbred Line (RIL) population derived from a cross between these populations. By combining greenhouse and field experiments, Quantitative Trait Loci (QTL) mapping, and path analysis, I examined (1) the genetic basis of seed dormancy, (2) the contribution of differential seedling establishment to local adaptation, (3) among-year variation in selection during seedling establishment, (4) direct and indirect effects of seed dormancy and timing of germination on fitness, and (5) the adaptive value of the seed bank. I found that both the level and the genetic basis of seed dormancy were affected by the maternal environment. One major-effect QTL was identified in all maternal environments, which overlaps with the dormancy gene DELAY OF GERMINATION 1 (DOG1). Selection through seedling establishment success contributed strongly to local adaptation and genetic tradeoffs, and varied among years. Variation in seedling establishment and overall fitness among RILs could be explained by genetically based differences in seed dormancy and timing of germination. Seed dormancy affected fitness throughout the life cycle, by affecting the proportion of germinated seeds, and indirectly via effects on timing of germination, plant size and flowering time. My results suggest that a considerable portion of A. thaliana seeds enter the seed bank. I found genetic differences in dormancy cycling behaviour between the two populations, which could contribute to local adaptation. The value of a seed bank should be higher at the Swedish study site than at the Italian study site due to lower rate of seed mortality in the soil. Overall, the results of this thesis demonstrate that early life stages contribute strongly to both the magnitude and the genetics of local adaptation.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-302862
Date January 2016
CreatorsPostma, Froukje M.
PublisherUppsala universitet, Växtekologi och evolution, Uppsala
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 1425

Page generated in 0.0021 seconds