Return to search

Extending ultrashort-laser-pulse measurement techniques to new dimensions, time scales, and frequencies

In the last decade, there has been tremendous progress in the field of ultrashort-pulse measurement. However, this effort has focused mostly on the temporal behavior of 100-fs, 800-nm ultrashort pulse, ignoring other pulse lengths, wavelengths, and the very common space-time couplings or so called spatio-temporal distortions. In this thesis work, I do an extensive study of spatio-temporal distortions and their measurement using Frequency Resolved Optical Gating (FROG) and its relatives. I clarify some ambiguities in the descriptions of these effects in the existing theory and establish a more general description of such distortions in ultrashort pulses. I also extend these measurement techniques to different wavelengths and pulse lengths. Specifically, I develop measurement devices for few-cycle NIR pulses, weak and narrowband fiber laser pulses, long (several-ps) NIR pulses, and visible pulses from NOPAs.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/6892
Date08 April 2005
CreatorsAkturk, Selcuk
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format4929375 bytes, application/pdf

Page generated in 0.0033 seconds