This thesis outlines the high intensity tabletop attosecond extreme ultraviolet laser source at the Institute for the Frontier of Attosecond Science and Technology Laboratory. First, a unique Ti:Sapphire chirped pulse amplifier laser system that delivers 14 fs pulses with 300 mJ energy at a 10 Hz repetition rate was designed and built. The broadband spectrum extending from 700 nm to 900 nm was obtained by seeding a two stage Ti:Sapphire chirped pulse power amplifier with mJ-level white light pulses from a gas filled hollow core fiber. It is the highest energy level ever achieved by a broadband pulse in a chirped pulse amplifier up to the current date. Second, using this laser as a driving laser source, the generalized double optical gating method is employed to generate isolated attosecond pulses. Detailed gate width analysis of the ellipticity dependent pulse were performed. Calculation of electron light interaction dynamics on the atomic level was carried out to demonstrate the mechanism of isolated pulse generation. Third, a complete diagnostic apparatus was built to extract and analyze the generated attosecond pulse in spectral domain. The result confirms that an extreme ultraviolet super continuum supporting 230 as isolated attosecond pulses at 35 eV was generated using the generalized double optical gating technique. The extreme ultraviolet pulse energy was ∼100 nJ at the exit of the argon gas target.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-3877 |
Date | 01 January 2013 |
Creators | Wu, Yi |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0011 seconds