Return to search

Nonlinear Ultrafast Excitation and Two-Dimensional Terahertz Spectroscopy of Solids

Ultrafast spectroscopy allows us to probe and understand material properties. With it, we can measure phonon-polaritons (optical phonons coupled with light) and the resulting dispersion curve in lithium niobate. Customizing the excitation source in ultrafast measurements can excite phonon modes to large amplitudes, allowing the experimental exploration of the Potential Energy Surface in solids. However, stronger pump fluences and bigger signal isn't always the answer in ultrafast spectroscopy. When sample signals and their nonlinear and mechanisms cannot be distinguished with 1D measurements, simple 2D THz measurements are a great place to start searching for distinct factors as was the case in cadmium tungstate. 2D measurements when paired with modeling and first principles calculations can reveal cutting edge information about exciting materials.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-10199
Date27 July 2021
CreatorsKnighton, Brittany E.
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttps://lib.byu.edu/about/copyright/

Page generated in 0.0019 seconds