Return to search

Samband mellan tjockleken hos PVD-skikt och förslitningsbeteendet vid svarvning / The relationship between coating thickness for PVD-coatings and wear behavior in turning

This project has as main goal to study the influence of the coating thickness, deposited by arc-PVD- technology, on the wear resistance of coated cemented carbide inserts in three different turning operations. An additional effort has also been made to develop a new test method for evaluating flank wear resistance. Three different coating types (Coating A, Coating B and Coating C) have been studied in three distinctive thicknesses (2, 4 and 6 μ m) for each type. For two of the coating types (Coating A and B) special studies has been done with the thickest coating, creating two additional coating versions of the thickest coating, by changing various deposition parameters, with the aim to enhance the cohesive properties of the coating and lower the residual stresses at the cutting edge. The results show increased crater wear resistance with increased coating thickness for all coating types, but the amount of increase changes with coating type (Coating A>B>C). Flaking wear resistance decreased with increased coating thickness for all coating types. Further the high temperature version of Coating A, showed a significant increase in the flaking wear resistance compared to the standard version of Coating A. The flank wear test showed an increased resistance with thicker coatings in all cases except for the 6 μ m version of Coating C. The flank wear resistance of the most flank wear resistant coatings (Coating B, C) was also successfully examined in a new developed test method. The method suppressed excessive crater wear on the rake face and presented a high abrasive wear rate on the flank and some flaking on the rake face. The amount of flaking is judged not to influence the testing of the flank wear resistance. For all the tested coatings in the new test an increase in the coating thickness resulted in better flank wear resistance.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-127729
Date January 2008
CreatorsLandälv, Ludvig
PublisherLuleå Tekniska Universitet
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds