Prion diseases are a group of fatal neurodegenerative protein-misfolding diseases. Microglia, the resident myeloid cells found within the brain, have been shown to demonstrate a reactive morphology during the disease process with conflicting evidence for both a neurotoxic and neuroprotective role. The studies presented here aimed to investigate the role of microglia activation using transcriptomic and morphological analysis of prion disease in mice. Initially, the host immune response to prion disease was explored using a publically available mouse prion disease dataset. Re-analysis of this dataset was performed using BioLayout Express3D; a novel software tool that supports the visualisation and clustering of correlation networks. Disease-associated genes up-regulated during the later stages of infection were present in two main clusters. The cellular origin of these genes was explored by examining their expression in a dataset comprised of pure populations of cells. This demonstrated that the primary cluster of up-regulated transcripts encompassed genes expressed mainly by microglia and to a lesser extent astrocytes and neurons. The secondary cluster comprised almost exclusively of interferon response genes. The conclusions of these analyses were different from those of the original study that suggested disease-associated genes were primarily neuronal in origin. Mouse models of prion disease were established by infecting a novel line of BALB/cJ inbred mice, expressing EGFP under control of a myeloid specific Csf1r promoter, with the 79A prion strain. Quantification of the morphological changes of EGFP expressing microglia suggested the cells accumulated in the medulla at sites of early misfolded protein deposition with minimal change in their overall appearance. An activated microglia morphology was not observed until protein deposition was extensive. Isolation of EGFP expressing microglia was performed for transcriptome analysis. The vast majority of disease associated genes demonstrated increased expression at the onset of clinical symptoms. The gene list was found to be highly enriched for genes associated with an innate immune response regulated by the NFκB signalling cascade. Also highly enriched were processes associated with protein translation, energy production and stress response. These data suggest a high metabolic load is burdened by proliferating microglia; and as part of a response which is strikingly more pro-inflammatory in nature than has previously been attributed to the microglia phenotype within prion disease. As an active contributor to normal homeostasis, microglia are more than just innate immune surveillance and are now considered an integral component in both the healthy and diseased brain. The ramifications of activation toward the microglia phenotype shown here will have direct and potentially cytotoxic influence on neighbouring microglia and other brain cell types implying microglia as major contributors to the neurotoxic environment found within the CNS during prion disease. Furthermore the identification of genes associated with metabolism offer many intriguing possibilities for manipulating the activity of microglia in pre-clinical therapeutic intervention.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:688031 |
Date | January 2015 |
Creators | Vincenti, James Edward |
Contributors | Manson, Jean ; Freeman, Thomas |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/15928 |
Page generated in 0.0018 seconds