Return to search

Data-Driven Decision-Making Framework for Large-Scale Dynamical Systems under Uncertainty

Managing large-scale dynamical systems (e.g., transportation systems, complex information systems, and power networks, etc.) in real-time is very challenging considering their complicated system dynamics, intricate network interactions, large scale, and especially the existence of various uncertainties. To address this issue, intelligent techniques which can quickly design decision-making strategies that are robust to uncertainties are needed. This dissertation aims to conquer these challenges by exploring a data-driven decision-making framework, which leverages big-data techniques and scalable uncertainty evaluation approaches to quickly solve optimal control problems. In particular, following techniques have been developed along this direction: 1) system modeling approaches to simplify the system analysis and design procedures for multiple applications; 2) effective simulation and analytical based approaches to efficiently evaluate system performance and design control strategies under uncertainty; and 3) big-data techniques that allow some computations of control strategies to be completed offline. These techniques and tools for analysis, design and control contribute to a wide range of applications including air traffic flow management, complex information systems, and airborne networks.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc862845
Date08 1900
CreatorsXie, Junfei
ContributorsHuang, Yan, Wan, Yan, Buckles, Bill, Fu, Song, Mills, Kevin
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Xie, Junfei, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0018 seconds