A series of model steels containing copper levels up to 0.48wt%, nickel up to 0.22wt% and silicon levels of 0.52wt% were oxidised in air at 1050 and 1150??C, and in a CO2-N2 mixture at 1250??C for times of up to 3 hours. The scaling kinetics were measured and the behaviour of copper-rich phase formation at the scale/metal interface was investigated. When oxidised at 1050/1150??C, significant quantities of copper-rich phase were observed for most model steels. The relatively high oxidation rate under these conditions led to the rapid development of a copper-rich layer with little copper diffusing into the metal. However, when oxidised at 1250??C, the copper-rich phase did not form for a significant amount of time; and for some model steels, not at all. This was attributed to the considerably lower oxidation rate and the fact that more copper was found to have diffused into the metal. Alloying additions of nickel and silicon were found to be beneficial in reducing the amount of copper-rich phase measured at the scale/metal interface under the conditions investigated at 1150??C and 1250??C. This occurred because nickel and silicon addition promoted the occlusion of copper-rich phase into the scale. Copper enrichment during oxidation was modelled using a numerical description of the diffusion processes involved. Predictions of the time for commencement of copper-rich phase formation at 1250??C were in close agreement with observation. Agreement between predicted and observed copper-rich layer thickness was less successful under conditions where occlusion was significant, and the measured thickness varied non-uniformly with time. The cracking susceptibility of the model steels was examined using a hot compression test. Oxidation was performed in air at 1050, 1150 and 1250??C and most specimens were compressed at 1050??C. The amount of cracking was found to increase with the amount of copper-rich phase precipitated at the scale/metal interface during oxidation. In general, nickel addition reduced the amount of cracking at all temperatures; and under some conditions prevented cracking altogether. Silicon reduced or completely suppressed cracking when the subscale formed was liquid. The beneficial effects of nickel and silicon addition were attributed to their effect of promoting copper occlusion.
Identifer | oai:union.ndltd.org:ADTP/238737 |
Date | January 2002 |
Creators | O'Neill, Daniel Scott, Materials Science & Engineering, Faculty of Science, UNSW |
Publisher | Awarded by:University of New South Wales. Materials Science and Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Daniel Scott O'Neill, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0015 seconds