This thesis pertains to two R&D objectives associated with deploying TMFD sensor technology for meeting AARST-NRPP metrics for Radon (Rn) in-air detection, as well as for monitoring of ultra-trace actinides in air, amidst other Rn-progeny alpha emitting radionuclides. A challenge has persisted over the past 40+ years for detecting trace actinides in air amidst a 100-1000x higher Rn-progeny background. This thesis had a primary aim for addressing this challenge, and developing and assessing for a novel technology solution. Both objectives were successfully met. Methods, designs, and experimental effects of apparatus are discussed for successful Rn and progeny detection for 1-100 pCi/L concentration levels, as well as for Rn-progeny “blind” spectroscopic detection of 10-12 μCi/cc concentrations of actinides (Pu/U/Am) in air. The resulting CTMFD based technology was compared with the state-of-art “Alpha Sentry” CAM system and found to offer superior performance in multiple categories, and ~18x improvement in time to detect (e.g. at 0.02 DAC in 3 hrs vs ~70 hrs for state-of-art) for actinides while also remaining ~100% blind to ~102x higher Rn-progeny background; and, with 1 keV energy resolution vs ~300-400 keV for Alpha Sentry.
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/12249953 |
Date | 21 June 2022 |
Creators | Mitchell Hemesath (8801069) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/DEVELOPMENT_OF_THE_CENTRIFUGALLY_TENSIONED_METASTABLE_FLUID_DETECTOR_FOR_IN-AIR_RADON_AND_ACTINIDE_ALPHA_DETECTION/12249953 |
Page generated in 0.002 seconds