Return to search

Localization properties of nonlinear disordered lattices

In this thesis, the properties of nonlinear disordered one dimensional lattices is investigated. Part I gives an introduction to the phenomenon of Anderson Localization, the Discrete Nonlinear Schroedinger Equation and its properties as well as the generalization of this model by introducing the nonlinear index α.

In Part II, the spreading behavior of initially localized states in large, disordered chains due to nonlinearity is studied. Therefore, different methods to measure localization are discussed and the structural entropy as a measure for the peak structure of probability distributions is introduced. Finally, the spreading exponent for several nonlinear indices is determined
numerically and compared with analytical approximations.

Part III deals with the thermalization in short disordered chains. First, the term thermalization and its application to the system in use is explained. Then, results of numerical simulations on this topic are presented where the focus lies especially on the energy dependence of the thermalization properties. A connection with so-called breathers is drawn. / In dieser Arbeit wird das Verhalten nichtlinearer Ketten mit Zufallspotential untersucht. Teil I enthaelt eine Einfuehrung in das Phaenomen der Anderson Lokalisierung, die Diskrete Nichtlineare Schroedinger Gleichung und ihren Eigenschaften sowie die verwendete Verallgemeinerung des Modells durch Einfuehrung eines Nichtlinearitaets-Indizes α.

In Teil II wird das Ausbreitungsverhalten von lokalisierten Zustaenden in langen, ungeordneten Ketten durch die Nichtlinearitaet untersucht. Dazu werden zuerst verschiedene Lokalisierungsmaße besprochen und außerdem die strukturelle Entropie als Messgroeße der Peakstruktur eingefuehrt. Im Anschluss wird der Ausbreitungskoeffzient fuer verschiedene Nichtlinearitaets-Indizes bestimmt und mit analytischen Absch¨tzungen verglichen.

Teil III behandelt schließlich die Thermalisierung in kurzen, ungeordneten Ketten. Dabei wird zuerst der Begriff Thermalisierung in dem verwendeten Zusammenhang erklaert. Danach erfolgt eine numerische Analyse von Thermalisierungseigenschaften lokalisierter Anfangszustaende, wobei die Energieabhaengigkeit besondere Beachtung genießt. Eine Verbindung mit sogenannten Breathers wird dargelegt.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:3146
Date January 2009
CreatorsMulansky, Mario
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Physik und Astronomie
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypeMastersThesis
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0021 seconds