Tracking the phases of Cenozoic deformation in the Eastern Cordillera of Colombia has proven to be a challenging task. Clear disagreements remain in interpretations of the timing of uplift of the Eastern Cordillera, possibly based on difficulties in distinguishing first-cycle Central Cordillera grains from recycled Eastern Cordillera clasts. This thesis focuses on the Eocene-Pliocene sedimentary record of the eastern foothills of the Eastern Cordillera at a latitude of 6°N, integrating basin analysis with several provenance techniques in order to date the activation of several thrust systems. Based on assessments of depositional environments and sediment dispersal patterns together with mineralogical and geochronological provenance, the onset of uplift in the axial zone of the Eastern Cordillera is constrained to be Oligocene. Prior to uplift, deposition in the eastern foothills was sourced from the eastern craton. Following the Oligocene episode, a continuous eastward advance of deformation is documented. An early Miocene episode probably reactivated the easternmost Cretaceous rift boundary along the eastern side of the Eastern Cordillera. Subsequent footwall shortcuts of those faults initiated activity in the middle to late Miocene, creating an intermontane (piggyback) basin in the eastern foothills at that time. In the preferred interpretation, this in-sequence history of thrust activation represents the main phases of deformation in the Eastern Cordillera from Eocene to Pliocene time, with neotectonic activity recording continued shortening. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2010-08-1759 |
Date | 23 December 2010 |
Creators | Bande, Alejandro Ezequiel |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.002 seconds