Return to search

Hygorthermal performance assessment of damaged building materials

An importantmatter in the field of building physics is the questioning of how wellbuildings sustain ageing, and how their overall efficiency evolves over their lifetime.Many causes for degradation are carried by moisture transfer through these porousmaterials. Indeed, infiltratedwatermay transport chemicals, altermechanical properties,and cause freeze thaw damage or mould development. It may also affect thermalproperties and energetic efficiency, as well as the health and comfort of the occupants.The understanding of how moisture transfer properties evolve during the lifespan ofbuildingmaterials is however far fromcomplete. The pore structure of amaterial itselfmay change over time, or be altered by cracks and defects caused bymechanical loadingand aggravated bymoisture-induced degradation. All sizes of fracturesmay have astrong impact on heat and moisture flow in the building envelope, and their influenceis to be accounted for in any long-termperformance assessment, not only of buildingand building components,but of any built structure in general. A considerable amountof work has already been performed in order to allow predicting the hygrothermal behaviourof buildings over longer periods of time. However, an accurate prediction of allranges of damage in a building component, from microscopic to macroscopic cracks,supposes an extensive knowledge of all damage-inducing, time-varying boundary conditionsof the problem during the simulation time. This also implies high computationalcosts, as well as important needs formaterial characterisation.As a complement to these predictive methods, a new approach was undertaken,combining experimental characterisation of crack patterns and numerical simulationsof coupled heat and moisture transfer. First, a preliminary study was conducted, consistingof measurements of the water vapour permeability of diffusely damaged constructionmaterials.This allowed identifying the experimental and numerical requirementsof the remainder of the work, which aimed at providing measurements of fracturenetwork geometries for their explicitmodelling in heat andmoisture transfer simulations.Digital image correlation and acoustic emission monitoring were then performedduring the degradation of cementitiousmaterials, in order to obtain quantitativedata on crack pattern geometries, and to assess the possibilities for damagemonitoringat the building scale. The optical technique, along with an appropriate imageprocessing procedure, was found suitable for providing precisemeasurements of fracturenetworks. Amethodwas also proposed for the interpretation of acoustic emissionrecordings in terms of damage quantification, localisation and identification.Then, a newmodel for coupled heat andmoisturemodelling in cracked porousmediawas developed, that allows including such measurements of fracture patterns intoa finite element mesh, and simulating flow accordingly. This model was validated onthe basis of experimentalmeasurements: digital image correlationwas performed duringthe fracturing of concrete samples, in which moisture uptake was then monitoredusing X-ray radiography. A good accordance was found between experimental and numericalresults in terms of 2-dimensional moisture concentration distributions. The validated code was then used for the simulation of test cases, in order to assess the hygrothermalperformance of damagedmulti-layered building components subjected toreal climatic conditions. The consequences of fractures on themoisture accumulationin walls, on the amplitude of sorption/desorption cycles and on the thermal performance,were observed.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00980172
Date19 October 2012
CreatorsRouchier, Simon
PublisherUniversité Claude Bernard - Lyon I
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.002 seconds