Dissertacao essencialmente sobre derivacoes em aneis mostra que toda derivacao de jordan num anel primo e livre de 2-torcao e uma derivacao usual. prova que toda derivacao de hasse-schmidt-jordan definida num anel semiprimo e livre de 2-torcao e uma derivacao de hasse-schmidt. finalisa com derivacoes algebricas d definidas num anel primo r (c0m unidade) e com suas respectivas extensoes d* ao anel de quocientes (a direita) de martingale de r denotado por q. e demonstrado entao, uma equivalencia entre as r, q e c-algebricidades de d e d*, onde c denota o centroide estendido de r.
Identifer | oai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/1384 |
Date | January 1994 |
Creators | Haetinger, Claus |
Contributors | Ferrero, Miguel Angel Alberto |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0014 seconds