Return to search

A Mathematical Model for Predicting Animal Population Persistence on Fragmented Landscapes

The effects of roads, buildings, and cities on animal populations are widespread and, often times, disastrous. These structures fragment animals' homes, inhibiting their ability to obtain essential resources and to reproduce. The question arises then: Under what circumstances can an animal population persist in a fragmented landscape? To attempt to answer this question, we present a spatially explicit reaction-diffusion model with varying growth and diffusion rates that incorporates animal behavior at points where habitats are fragmented for four different habitats. The outcome of extinction or persistence of the animal population is determined by examining the effects of changing parameters on the principal eigenvalue of the associated eigenvalue problem. These results are also interpreted biologically and used to predict how wildlife protective measures should be implemented.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-1703
Date01 January 2021
CreatorsJones, Allyson
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.0026 seconds