Many organisms are known to reach high levels of endemism and biodiversity in the temperate forests of Southern Appalachia, especially in the dense forests and rugged terrain of the Blue Ridge physiographic province. Many plants and fungi reach their highest levels of biodiversity in these mountains, as does one group of vertebrates: the lungless salamanders, Plethodontidae. This family of salamanders hosts the most species of any other group of salamanders on earth and has adapted to a wide range of habitats. Only two of the approximately twenty-seven known genera are not found in North or South America, and while we know much about the modern-day biology of this family, few fossils older than ~15,000 years have been recovered, complicating our understanding of the historical distribution of this group and the timing of key evolutionary events within the family. Recently discovered salamander fossils from the Gray Fossil Site provide the foundation of this project. We describe these exceptionally large plethodontid remains to a new genus that belongs to the group containing dusky salamanders, or desmognathans. The morphology of the fossil material resembles Phaeognathus hubrichti, an extant burrowing species from southern Alabama with a suite of primitive characteristics. Comparison of the fossil material to modern desmognathans using geometric statistical methods has revealed that the extinct form was likely similar in lifestyle to P. hubrichti, but considerably larger. It was unparalleled in the southern Appalachians in terms of size and ecology, and reveals a more complex evolutionary history for desmognathan salamanders.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:asrf-1383 |
Date | 12 April 2019 |
Creators | Gunnin, R. Davis, Schubert, Blaine W., Samuels, Joshua X., Bredehoeft, Keila E. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | Appalachian Student Research Forum |
Page generated in 0.0021 seconds