N-methyl-6-hydroxyquinolinium (NM6HQ) is a powerful excited-state proton donor, exhibiting a huge pKa drop from 7.2 in the ground state to -7 in the excited state. The zwitterionic nature of the proton transfer product encourages intramolecular electron transfer away from the hydroxyl moiety to the distal ring, allowing for a large pKa jump in the excited state. This process is reversible, making the NM6HQ salts powerful transient superacids. We have investigated the excited-state proton transfer (ESPT) from NM6HQ salts to various basic solvents (alcohols, DMSO). A model has been developed that adequately describes the ion-dipole interactions in the ESPT geminate-recombination process. Our studies have shown that the counterion plays a large role in the ESPT. Likewise, initiation of cationic polymerization is controlled by the counterion. NM6HQ perfluoroalkylsulfonates appear to be the first molecules reported which are capable of initiating aliphatic epoxide polymerization at room temperature through a proton transfer mechanism.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/24665 |
Date | 11 July 2008 |
Creators | Salvitti, Michael Anthony |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Thesis |
Page generated in 0.002 seconds