Return to search

Transverse Thermoelectric Properties of Cu/Mg2Si and Ni/Mg2Si Artificially Anisotropic Materials

In this thesis the spark plasma sintering process (SPS) was used to press Mg2Si powder with Ni and Cu slices into alternating layer stacks. These stacks, once cut at an angle, are an artificially anisotropic material. This anisotropy provides transverse thermoelectric properties to the sample. The transverse transport properties were measured along with the individual component transport properties. The SPS process provided malleable samples that gave a power factors of for the Ni/Mg2Si stack and for the Cu/Mg2Si stack. These fall short of the theoretical calculations which would give the power factors as .0254 for the Ni/Mg2Si stack and .211 for the Cu/Mg2Si stack. It is theorized that eddy currents and interface resistances between the layers are the causes for these discrepancies.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-3066
Date15 May 2015
CreatorsEsch, David J N
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.002 seconds