Return to search

Simplifications of non-local damage models

Ductile fracture presents challenges with respect to material modelling and numerical simulations of localization. The strain and damage localization may be unwanted as it indicates a failure in the process or, as in the case of machining and cutting, a wanted phenomenon to be controlled. The latter requires a higher accuracy regarding the modelling of the underlying coupled plastic and fracturing/damage behaviour of the material, metal in the current context as well as the robustness of the simulation procedure. The focus of this thesis is on efficient and reliable finite element solution of the localization problem through the non-local damage model. The non-local damage model extends the standard continuum mechanics theory by using non-local continuum theory in order to achieve mesh independent results when simulating fracture or shear localization. In this work, the non-local damage model and its various simplifications are evaluated in an in-house finite element code developed using Matlab™. The accuracy, robustness, efficiency and costs of the models are investigated and also compared to a general multi-length scale finite element formulation. A numerical study versus published data is used to demonstrate the validity of the model. The explicit non-local damage variant will be implemented in a commercial finite element code for use in machining simulation

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-17571
Date January 2014
CreatorsAbiri, Olufunminiyi
PublisherLuleå tekniska universitet, Material- och solidmekanik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLicentiate thesis / Luleå University of Technology, 1402-1757

Page generated in 0.002 seconds