Annual Average Daily Traffic (AADT) data in the transportation industry today is an important tool used in various fields such as highway planning, pavement design, traffic safety, transport operations, and policy-making/analyses. Systematic literature review was used to identify the current methods of estimating AADT and ranked. Ordinary linear kriging occurred most. Also, factors that influence the accuracy of AADT estimation methods as identified include geographical location and road type amongst others. In addition, further analysis was carried out to determine the most apposite kriging algorithm for AADT data. Three linear (universal, ordinary, and simple), three nonlinear (disjunctive, probability, and indicator) and bayesian (empirical bayesian) kriging methods were compared. Spherical and exponential models were employed as the experimental variograms to aid the spatial interpolation and cross-validation. Statistical measures of correctness (mean prediction and root-mean-square errors) were used to compare the kriging algorithms. Empirical bayesian with exponential model yielded the best result.
Identifer | oai:union.ndltd.org:ndsu.edu/oai:library.ndsu.edu:10365/31649 |
Date | January 2019 |
Creators | Owaniyi, Kunle Meshach |
Publisher | North Dakota State University |
Source Sets | North Dakota State University |
Detected Language | English |
Type | text/thesis |
Format | application/pdf |
Rights | NDSU policy 190.6.2, https://www.ndsu.edu/fileadmin/policy/190.pdf |
Page generated in 0.0012 seconds