Low back pain represents a significant concern in the United States, with 70% of individuals experiencing symptoms at some point in their lifetime. Although the specific cause of low back pain remains unclear, symptoms have been strongly associated with degeneration of the intervertebral disc. Insufficient nutritional supply to the disc is believed to be a major mechanism for tissue degeneration. Understanding nutrients' transport in intervertebral disc is crucial to elucidate the mechanisms of disc degeneration, and to develop strategies for tissue repair (in vivo), and tissue engineering (in vitro). Transport in intervertebral disc is complex and involves a series of electromechanical, chemical and biological coupled events. Despite of the large amount of studies performed in the past, transport phenomena in the disc are still poorly understood. This is partly due to the limited number of available experimental techniques for investigating transport properties, and the paucity of theoretical or numerical methods for systematically predicting the mechanisms of solute transport in intervertebral disc. In this dissertation, a theoretical and experimental approach was taken in order to investigate the mechanisms of solute transport and binding interactions in intervertebral disc. New imaging techniques were developed for the experimental determination of diffusive and binding parameters in biological tissues. The techniques are based on the principle of fluorescence recovery after photobleaching, and allow the determination of the anisotropic diffusion tensor, and the rates of binding and unbinding of a solute to the extracellular matrix of a biological tissue. When applied to the characterization of transport properties of intervertebral disc, these methods allowed the establishment of a relationship between solute anisotropic and inhomogeneous diffusivity and the unique morphology of human lumbar annulus fibrosus. A mixture theory for charged hydrated soft tissues was presented as a framework for theoretical investigations on solute transport and binding interactions in cartilaginous tissues. Based on this theoretical framework and on experimental observations, a finite element model was developed to predict solute diffusive-convective-reactive transport in cartilaginous tissues. The numerical model was applied to simulate the effect of mechanical loading on solute transport and binding interactions in cartilage explants and intervertebral disc.
Identifer | oai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_dissertations-1321 |
Date | 10 December 2009 |
Creators | Travascio, Francesco |
Publisher | Scholarly Repository |
Source Sets | University of Miami |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Open Access Dissertations |
Page generated in 0.0017 seconds