Return to search

Reducing Training Time in Text Visual Question Answering

Artificial Intelligence (AI) and Computer Vision (CV) have brought the promise of many applications along with many challenges to solve. The majority of current AI research has been dedicated to single-modal data processing meaning they use only one modality such as visual recognition or text recognition. However, real-world challenges are often a combination of different modalities of data such as text, audio and images. This thesis focuses on solving the Visual Question Answering (VQA) problem which is a significant multi-modal challenge. VQA is defined as a computer vision system that when given a question about an image will answer based on an understanding of both the question and image. The goal is improving the training time of VQA models. In this thesis, Look, Read, Reason and Answer (LoRRA), which is a state-of-the-art architecture, is used as the base model. Then, Reduce Uni-modal Biases (RUBi) is applied to this model to reduce the importance of uni- modal biases in training. Finally, an early stopping strategy is employed to stop the training process once the model accuracy has converged to prevent the model from overfitting. Numerical results are presented which show that training LoRRA with RUBi and early stopping can converge in less than 5 hours. The impact of batch size, learning rate and warm up hyper parameters is also investigated and experimental results are presented. / Graduate

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/14062
Date15 July 2022
CreatorsBehboud, Ghazale
ContributorsGulliver, T. Aaron
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsAvailable to the World Wide Web

Page generated in 0.002 seconds