The purpose of this research was to investigate the physical weathering of rock along the Victoria Land Coast, Antarctica. It was designed to contribute to the Latitudinal Gradient Project, a joint initiative between the New Zealand, Italian and United States Antarctic Programmes. The Latitudinal Gradient Project aims to improve our understanding of the ecosystems of the Dry Valleys and ice-free areas of the Ross Sea Region and, by using latitude as a proxy measure, identify how they might be affected by future climate change. The approach taken for this research was to use information on rock (from one rock group) temperature and moisture conditions gathered from three field locations to inform laboratory simulations. The laboratory simulations would then be used to investigate the weathering of small rock blocks and aggregates. Two temperature cycles approximating those experienced during summer and spring/autumn were identified and simulations undertaken in a specially adapted freezer. Three levels of moisture were applied: no moisture, half saturation and full saturation. Results of the laboratory simulations indicated that although rocks responded in different ways to different processes, granular disintegration took place even in the absence of additional moisture and did not require crossings of the 0 OC isotherm, nor were high levels of moisture required for across zero temperature cycling to produce weathering effects. A model that related weathering to latitude was developed and changes in climate explored. It was found that the weathering effect of summer and spring/autumn cycles was different and depended on rock characteristics rather than latitude. Increasing the ratio of summer to spring/autumn temperature cycles by 10% indicated that weathering could decrease or remain the same depending on the particular rock. Changes in temperature were found to be more important than changes in moisture. A weathering index that related local climate and rock properties to weathering was also developed and this highlighted the difficulties of using laboratory results to predict field rates of weathering. There were some surprising results from the field, including the presence of much more moisture on the surface of the rock, primarily from blowing snow, than had been predicted for this dry environment. This occurred even in the presence of negative rock surface temperatures. In addition, winter rock surface temperatures can fluctuate up to 25 OC, getting as warm as -10 OC. Macro-climate and changes in air temperature in response to foehn and katabatic winds were the drivers for these fluctuations.
Identifer | oai:union.ndltd.org:ADTP/273690 |
Date | January 2006 |
Creators | Elliott, Christine Eleanor |
Publisher | University of Canterbury. Geography |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Christine Eleanor Elliott, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml |
Page generated in 0.0024 seconds