Return to search

Practical Realization of Switched and Adaptive Parasitic Monopole Radiating Structures

Switched and adaptive parasitic monopole array radiating structures are investigated. Antenna design is orientated toward increasing practicability for implementation in terrestrial wireless communication systems. A number of antennas are designed with the aid of optimization and commercial simulation software. Simulation procedure was verified with the experimental manufacture and measurement of the arrays. The antennas presented in this thesis comprise an active monopole surrounded by a ring of parasitic monopoles. Parasitic radiators are constructed with static loading to enable simple experimental realization. Beam positions of an electrically steered equivalent antenna are thus simulated. Antenna symmetry ensures the beam can be reproduced throughout the azimuth. Complex antenna geometries require antenna design through optimization. A genetic algorithm is employed with HFSS and NEC for electromagnetic analysis. The robust optimization method couples with simulation software flexibility to provide an effective design tool for arbitrary structures. The genetic algorithm is employed strictly for design and not complete structural optimization. Dual band, five and six element switched parasitic antennas are presented. Lumped elemental loading along the radiators provide resonance and directed radiation at two GSM frequencies. Load value, radiator dimension and spacing are incorporated as design parameters. Experimentally built, 10dB return loss bandwidths of 17.2% and 9.6% and front to back ratios of 12.6dB and 8.4dB at 900MHz and 1900MHz respectively are measured. To reduce the ground requirements of monopole arrays, a skirted ground structure for switched parasitic antennas is analyzed. A six element switched parasitic monopole array with conductive ground skirt exhibits a front to back ratio of 10.7dB and main lobe gain of 6.4dBi at 1.575GHz. Radiation is not elevated despite lateral ground terminating at the parasitic elements. Skirt height is observed to linearly control radiation elevation, depressing the principal lobe through 40 degrees from 23 degrees above the horizontal. The Electronically Steerable Passive Array Radiator or ESPAR antenna is an adaptive parasitic monopole array. An ESPAR radiating structure incorporating a conductive ground skirt is designed for operation at 2.4GHz. Utility is confirmed with a frequency sensitivity analysis showing consistent electrical characteristics over an 8.1% bandwidth. The antenna design is improved with optimization to reduce average principal lobe elevation from 25 degrees to 9.7 degrees.

Identiferoai:union.ndltd.org:ADTP/195463
Date January 2004
CreatorsSchlub, Robert Walter, n/a
PublisherGriffith University. School of Microelectronic Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.gu.edu.au/disclaimer.html), Copyright Robert Walter Schlub

Page generated in 0.0014 seconds