Return to search

Characterization of antibiotic resistance genes abundance and diversity in soil bacteria by metagenomic approaches : what is the dissemination potential of the soil resistome?

Environmental bacteria and especially soil bacteria are active producers of antibiotic molecules and most drugs used nowadays are isolated from saprophytic soil bacteria and these microorganisms have also evolved numerous resistance pathways leading to an arsenal of Antibiotic Resistance Genes Determinants (ARGD) known as the environmental resistome. A survey of ARGD prevalence is required in order to characterize this natural phenomenon with critical implications in our current infectious diseases management. In order to perform such analysis we compiled a set of 71 metagenomic datasets from various environmental origins: soils, oceans, lakes, human feces, indoor air, etc., and compared their sequences with a database of known antibiotic resistance gene determinants (ARGD). ARGD-annotated reads are found in every environment analyzed confirming their ubiquity. Soil is found to be the richest and shares a large part of ARGD with the human gut microbiome, indicating ARGD transfers between these environments. Experiments using qPCR and metagenomic DNA sequencing on soil samples from two sites with known and distinct antibiotic pollution history were conducted to understand how ARGD abundance and diversity in soil are affected when impacted by antibiotic molecules. The first site is a reference soil from a long-term experiment without history of antibiotic pollution (Rothamsted Park Grass, UK). Soil microcosms are setup with addition of either antibiotic-containg animal manure or pure molecules and incubated for 6 months to monitor changes in ARGD concentration following these perturbations. Our second study-site is a very remote settlement in French Guiana where antibiotics are available since recently and may have impacted the local soil microbial community. Soil samples are taken following a line-transect going from the village (antibiotic source) to 3km deep in the forest in a gradient of human-impact. Our results all confirm prevalence of ARGD in soil at significant abundance but also that ARGD distribution is more correlated to environmental factors such as soil type, microbial taxonomy composition or microcosms incubation conditions than antibiotic molecules exposure in both sites. Pathogens ARGD diversity is far lower than ARGD diversity found in the environment and not all the soil resistome is readily accessible for transfer. In order to characterize the soil mobile gene pool, a strategy is proposed to isolate specifically mobile DNA directly from the environment for sequencing purposes. Better knowledge on the microbial ecology factors limiting ARGD transfers to pathogens may greatly help us reduce the current threat on our limited medical antibiotic molecules resource.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01068359
Date16 May 2014
CreatorsNesme, Joseph
PublisherEcole Centrale de Lyon
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.2556 seconds