Solar-driven photocatalysis is of great interest in terms of a sustainable use of energy and its application in wastewater treatment. The UV light-driven photogeneration of H2O2 by solar irradiation is an advanced strategy for the treatment of bacteria and recalcitrant pollutants in wastewater, but suffers from low efficiencies. In this work, a solar-driven multifunctional nanocomposite consisting of Tm3+ upconverting nanoparticles, poly(vinyl alcohol), poly(acrylic acid) and hydroxylated sulfonated poly(ether ether ketone) was prepared. The components were crosslinked via a heating treatment at 170 °C, resulting in a non-leaching porous material. This nanocomposite exhibited excellent adsorption ability (89 % in 150 min) toward a 100 mg/L ciprofloxacin aqueous solution and proved to photodegrade it (50 %) upon 4 h artificial solar irradiation, exploiting photon upconversion processes. Moreover, an 80 % bactericidal effect against E. coli was registered upon sunlight irradiation. Altogether, these results suggest the feasibility of a solar-driven wastewater treatment based on upconverting nanoparticles.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:90987 |
Date | 02 May 2024 |
Creators | Fan, Siyuan, Inkumsah Jnr, Jabez Ebenezer, Trave, Enrico, Gigli, Matteo, Joshi, Tanmaya, Licciardello, Nadia, Sgarzi, Massimo, Cuniberti, Gianaurelio |
Publisher | Elsevier |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 1873-3212, 146877, 10.1016/j.cej.2023.146877, info:eu-repo/grantAgreement/European Commission/H2020 | MSCA-RISE/734381//Immune activity Mapping of Carbon Nanomaterials/CARBO-IMmap, info:eu-repo/grantAgreement/European Commission/H2020 | MSCA-ITN-ETN/813036//Bottom-Up generation of atomicalLy precise syntheTIc 2D MATerials for high performance in energy and Electronic applications – A multi-site innovative training action/ULTIMATE |
Page generated in 0.0019 seconds