Plusieurs souches cliniques de Candida albicans résistantes aux médicaments antifongiques azolés surexpriment des gènes encodant des effecteurs de la résistance appartenant à deux classes fonctionnelles : i) des transporteurs expulsant les azoles, CDR1, CDR2 et MDR1 et ii) la cible des azoles 14-lanostérol déméthylase encodée par ERG11. La surexpression de ces gènes est due à la sélection de mutations activatrices dans des facteurs de transcription à doigts de zinc de la famille zinc cluster (Zn2Cys6) qui contrôlent leur expression : Tac1p (Transcriptional activator of CDR genes 1) contrôlant l’expression de CDR1 et CDR2, Mrr1p (Multidrug resistance regulator 1), régulant celle de MDR1 et Upc2p (Uptake control 2), contrôlant celle d’ERG11. Un autre effecteur de la résistance clinique aux azoles est PDR16, encodant une transférase de phospholipides, dont la surexpression accompagne souvent celle de CDR1 et CDR2, suggérant que les trois gènes appartiennent au même régulon, potentiellement celui de Tac1p. De plus, la régulation transcriptionnelle du gène MDR1 ne dépend pas seulement de Mrr1p, mais aussi du facteur de transcription de la famille basic-leucine zipper Cap1p (Candida activator protein 1), un régulateur majeur de la réponse au stress oxydatif chez C. albicans qui, lorsque muté, induit une surexpression constitutive de MDR1 conférant la résistance aux azoles. Ces observations suggèrent qu’un réseau de régulation transcriptionnelle complexe contrôle le processus de résistance aux antifongiques azolés chez C. albicans. L’objectif de mon projet au doctorat était d’identifier les cibles transcriptionnelles directes des facteurs de transcription Tac1p, Upc2p et Cap1p, en me servant d’approches génétiques et de génomique fonctionnelle, afin de i) caractériser leur réseau transcriptionnel et les modules transcriptionnels qui sont sous leur contrôle direct, et ii) d’inférer leurs fonctions biologiques et ainsi mieux comprendre leur rôle dans la résistance aux azoles. Dans un premier volet, j’ai démontré, par des expériences de génétique, que Tac1p contrôle non seulement la surexpression de CDR1 et CDR2 mais aussi celle de PDR16. Mes résultats ont identifié une nouvelle mutation activatrice de Tac1p (N972D) et ont révélé la participation d’un autre régulateur dans le contrôle transcriptionnel de CDR1 et PDR16 dont l’identité est encore inconnue. Une combinaison d’expériences de transcriptomique et d’immunoprécipitation de la chromatine couplée à l’hybridation sur des biopuces à ADN (ChIP-chip) m’a permis d’identifier plusieurs gènes dont l’expression est contrôlée in vivo et directement par Tac1p (PDR16, CDR1, CDR2, ERG2, autres), Upc2p (ERG11, ERG2, MDR1, CDR1, autres) et Cap1p (MDR1, GCY1, GLR1, autres). Ces expériences ont révélé qu’Upc2p ne contrôle pas seulement l’expression d’ERG11, mais aussi celle de MDR1 et CDR1. Plusieurs nouvelles propriétés fonctionnelles de ces régulateurs ont été caractérisées, notamment la liaison in vivo de Tac1p aux promoteurs de ses cibles de façon constitutive et indépendamment de son état d’activation, et la liaison de Cap1p non seulement à la région du promoteur de ses cibles, mais aussi celle couvrant le cadre de lecture ouvert et le terminateur transcriptionnel putatif, suggérant une interaction physique avec la machinerie de la transcription. La caractérisation du réseau transcriptionnel a révélé une interaction fonctionnnelle entre ces différents facteurs, notamment Cap1p et Mrr1p, et a permis d’inférer des fonctions biologiques potentielles pour Tac1p (trafic et la mobilisation des lipides, réponse au stress oxydatif et osmotique) et confirmer ou proposer d’autres fonctions pour Upc2p (métabolisme des stérols) et Cap1p (réponse au stress oxydatif, métabolisme des sources d’azote, transport des phospholipides). Mes études suggèrent que la résistance aux antifongiques azolés chez C. albicans est intimement liée au métabolisme des lipides membranaires et à la réponse au stress oxydatif. / Many azole resistant Candida albicans clinical isolates overexpress genes encoding azole resistance effectors that belong to two functional categories: i) CDR1, CDR2 and MDR1, encoding azole-efflux transporters and ii) ERG11, encoding the target of azoles 14-lanosterol demethylase. The constitutive overexpression of these genes is due to activating mutations in transcription factors of the zinc cluster family (Zn2Cys6) which control their expression. Tac1p (Transcriptional activator of CDR genes 1), controlling the expression of CDR1 and CDR2, Mrr1p (Multidrug resistance regulator 1), regulating MDR1 expression and Upc2p (Uptake control 2), controlling the expression of ERG11. Another determinant of clinical azole resistance is PDR16, encoding a phospholipid transferase, whose overexpression often accompanies that of CDR1 and CDR2 in clinical isolates, suggesting that the three genes belong to the same regulon, potentially that of Tac1p. Further, MDR1 expression is not only regulated by Mrr1p, but also by the basic-leucine zipper transcription factor Cap1p (Candida activator protein 1), which controls the oxidative stress response in C. albicans and whose mutation confers azole resistance via MDR1 overexpression. These observations suggest that a complex transcriptional regulatory network controls azole resistance in C. albicans. My Ph.D. studies are aimed at identifying the direct transcriptional targets of Tac1p, Upc2p and Cap1p using genetics and functional genomics approches in order to i) characterize their regulatory network and the transcriptional modules under their direct control and ii) infer their biological functions and better understand their roles in azole resistance. In the first part of my studies, I showed that Tac1p does not only control the expression of CDR1 and CDR2, but also that of PDR16. My results also identified a new activating mutation in Tac1p (N972D) and revealed that the expression of CDR1 and PDR16 is under the control of another yet unknown regulator. The combination of transcriptomics and genome-wide location (ChIP-chip) approaches allowed me to identify the in vivo direct targets of Tac1p (PDR16, CDR1, CDR2, ERG2, others), Upc2p (ERG11, ERG2, MDR1, CDR1, others) and Cap1p (MDR1, GCY1, GLR1, others). These results also revealed that Upc2p does not only control the expression of ERG11 but also that of MDR1 and CDR1. Many new functional features of these transcription factors were found, including the constitutive binding of Tac1p to its targets under both activating and non-activating conditions, and the binding of Cap1p which extends beyond the promoter region of its target genes, to cover the open reading frame and the putative transcription termination regions, suggesting a physical interaction with the transcriptional machinery. The characterization of the transcriptional regulatory network revealed a functional interaction between these factors, notably between Cap1p and Mrr1p, and inferred potential biological functions for Tac1p (lipid mobilization and traffic, response to oxidative and osmotic stress) and confirmed or suggested other functions for Upc2p (sterol metabolism) and Cap1p (oxidative stress response, regulation of nitrogen utilization and phospholipids transport). Taken together, my results suggest that azole resistance in C. albicans is tightly linked to membrane lipid metabolism and oxidative stress response.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMU.1866/3560 |
Date | 10 1900 |
Creators | Znaidi, Sadri |
Contributors | Raymond, Martine |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0036 seconds