Return to search

The mexCD-oprJ multidrug efflux operon in Pseudomonas aeruginosa: regulation by the NfxB-like novel regulator PA4596 and envelope stress

Expression of the mexCD-oprJ multidrug efflux operon is enhanced by the presence of membrane damaging agents [e.g., the biocide chlorhexidine (Chx)] or mutations in the nfxB gene encoding a repressor of efflux gene expression, both dependent on the AlgU envelope stress response sigma factor. Details of mexCD-oprJ regulation are, however, lacking. In examining the mexCD-oprJ locus, a gene, PA4596, encoding a homologue of NfxB (61% identity) was identified downstream of oprJ, a location conserved in all sequenced Pseudomonas aeruginosa isolates and in Pseudomonas putida. Opposite to mexCD-oprJ, PA4596 expression was reduced by Chx exposure, as assessed using RT-PCR; although like mexCD-oprJ, this was AlgU-dependent (i.e., lost in a ΔalgU strain). Deletion of PA4596 had no impact on Chx resistance indicating that it is not required for Chx-inducible mexCD-oprJ expression/ MexCD-OprJ-dependent Chx resistance. In contrast, mexCD-oprJ expression and the attendant multidrug resistance of nfxB deletion mutants were compromised upon deletion of PA4596, indicating that PA4596 plays a positive role in mexCD-oprJ expression in such mutants. Consistent with this, PA4596 expression increased in nfxB deletion and missense mutants in parallel with mexCD-oprJ. Intriguingly, mexCD-oprJ expression and multidrug resistance were observed in a mutant lacking an nfxB mutation (demonstrating an NfxB-like phenotype) and in an nfxB missense mutant and these were not compromised upon deletion of PA4596. Thus, mexCD-oprJ hyperexpression can be both PA4596-dependent and -independent. A bacterial 2-hybrid assay revealed a PA4596-PA4596 interaction, consistent with the protein forming dimers as NfxB has been shown to do. Two-hybrid assays also demonstrated that NfxB and PA4596 interact. While the functional significance of this remains to be elucidated, it is consistent with their common role in regulating mexCD-oprJ expression and is suggestive of a complex and possibly novel regulatory mechanism. These data highlight the complexity of mexCD-oprJ regulation and the apparently multiple pathways to efflux gene expression, suggestive of multiple roles for this efflux system in P. aeruginosa independent of antimicrobial efflux. / Thesis (Master, Microbiology & Immunology) -- Queen's University, 2009-08-18 14:25:18.107

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/5066
Date20 August 2009
CreatorsPURSSELL, ANDREW
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Format1321077 bytes, application/pdf
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0019 seconds