Return to search

4D optical coherence tomography of aortic valve dynamics in a murine mouse model ex vivo

The heart and its mechanical components, especially the heart valves and leaflets, are under enormous strain during lifetime. Like all highly stressed materials, also these biological components undergo fatigue and signs of wear, which impinge upon cardiac output and in the end on health and living comfort of affected patients. Thereby pathophysiological changes of the aortic valve leading to calcific aortic valve stenosis (AVS) as most frequent heart valve disease in humans are of particular interest. The knowledge about changes of the dynamic behavior during the course of this disease and the possibility of early stage diagnosis could lead to the development of new treatment strategies and drug-based options of prevention or therapy.
ApoE-/- mice as established model of AVS versus wildtype mice were introduced in an ex vivo artificially stimulated heart model. 4D optical coherence tomography (OCT) in combination with high-speed video microscopy were applied to characterize dynamic behavior of the murine aortic valve and to characterize dynamic properties during artificial stimulation. OCT and high-speed video microscopy with high spatial and temporal resolution represent promising tools for the investigation of dynamic behavior and their changes in calcific aortic stenosis disease models in mice.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35044
Date29 August 2019
CreatorsSchnabel, Christian, Jannasch, Anett, Faak, Saskia, Waldow, Thomas, Koch, Edmund
PublisherSPIE
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.1117/12.2181361

Page generated in 0.0022 seconds