The development of recombinant proteins for therapeutic applications has revolutionized the pharmaceutical industry. In particular, monoclonal antibodies are the safest class of all therapeutic molecules and account for the majority of recombinant proteins currently undergoing clinical trials. A variety of technologies exist to engineer antibodies with a desired binding specificity and affinity, both of which are a prerequisite for therapeutic applications. This dissertation describes the implementation of a novel combinatorial library screening technology for the discovery and engineering of antibodies with unique binding properties. Combinatorial library screening technologies are used for the in vitro isolation of antibodies from large ensembles of proteins (libraries) typically produced by microorganisms using molecular biology techniques. Our lab has developed a powerful antibody discovery technology that relies on E. coli display by anchored periplasmic expression, otherwise known as APEx. First, I compared the effects of using combinatorial libraries comprising either smaller, monovalent single-chain antibody fragments (scFv), or the much larger, bifunctional full-length IgG antibodies. These technologies were used to isolate a small panel of antigen specific antibodies from the same library of antibody variable domains amplified from a mouse immunized with the Protective Antigen (PA) component from Bacillus anthracis, the causative agent of anthrax. Overall, IgG display resulted in the isolation of a broader panel of variable domain sequences. Most of these variable domains exhibited substantially reduced affinity when expressed as scFvs, which is consistent with the finding that none of these could be isolated from the equivalent scFv library. These results indicate that the antibody format used during in vitro selection affects which antibody variable domains will be discovered. Second, I developed several modifications of the APEx methodology to allow for more efficient recovery of antibodies with desired properties. Specifically, the system was reengineered to simultaneously account for antibody binding and expression levels in order to isolate the highest affinity antibodies with favorable expression characteristics. Third, the new approach, coupled with optimized fluorescence activated cell sorting (FACS) settings, was used to increase the affinity of an antibody by 35-fold resulting in a K[subscript D] of 100 pM. It was demonstrated that genetic transfer of this high affinity antibody specific for the V antigen of Yersinia pestis, the etiologic agent of the plague, conferred increased protection against intranasal challenge with a 363 LD₅₀ of Y. pestis in mice. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/6903 |
Date | 05 February 2010 |
Creators | Van Blarcom, Thomas John |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0021 seconds