Return to search

A computational implementation of design sensitivity analysis and structural optimisation

Bibliography: pages 118-121. / In the field of computational mechanics, increases in computing power and enhancements in material and kinematic models have enhanced the feasibility of performing structural design optimisation for a wide range of applications. The work presented here was motivated by the current groundswell of research effort in computational optimisation. Design Sensitivity Analysis (DSA) crucially underpins much of structural optimisation and, as such, is focussed on more intently than the optimisation theory itself: various approaches to the Direct Differentiation Method (DDM) DSA procedure are investigated and computationally implemented. The procedures implemented were chosen so as to involve a range of important issues in computational sensitivity analysis, particularly * Shape and non-shape sensitivity analysis, * Total and Updated Lagrange-based DSA, * DSA of displacement and non-displacement based response functionals, * Multiparameter DSA. * DSA for large strain behaviour The primary objectives of this thesis are: I. Development of a design sensitivity formulation which, when discretised, resembles the standard displacement based kinematic element formulation, thus enabling the implementation of design sensitivity analysis in established Finite Element Analysis (FEA) codes as a 'pseudo'-element routine. II. lmplemention of several design sensitivity formulations and structural optimisation into the FEA code ABAQUS as a verification of the first objective. Numerical results provided in this work demonstrate the successful completion of the above-mentioned objectives. The discretised DSA formulations presented, as well as the 'pseudo'-element approach adopted, particularly in the case of shape DSA are entirely original. To the best of the author's knowledge, DSA and DSA-based structural optimisation had never before been attempted with ABAQUS. The research conducted here lays the foundation for potentially very fruitful future work.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/16106
Date January 1996
CreatorsBothma, André Smith
ContributorsRonda, Jacek
PublisherUniversity of Cape Town, Faculty of Science, Department of Mathematics and Applied Mathematics
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeMaster Thesis, Masters, MSc
Formatapplication/pdf

Page generated in 0.0128 seconds