Return to search

High Speed Model Implementation and Inversion Techniques for Smart Material Transducers

Smart material transducers are utilized in wide range of applications, including nanopositioning, fluid pumps, high accuracy, high speed milling, objects, vibration control and/or suppression, and artificial muscles. They are attractive because the resulting devices are solid-state and often very compact. However, the coupling of field or temperature tomechanical deformation, which makes these materials effective transducers, also introduces hysteresis and time-dependent behaviors that must be accommodated in device designs and models before the full potential of compounds can be realized. In this dissertation, we present highly efficient modeling techniques to characterize hysteresis and constitutive nonlinearities in ferroelectric, ferromagnetic, and shape memory alloy compounds and model inversion techniques which permit subsequent linear control designs.

Identiferoai:union.ndltd.org:NCSU/oai:NCSU:etd-07302007-145144
Date03 August 2007
CreatorsBraun, Thomas R.
ContributorsProf. Stefan Seelecke, Prof. Pierre Gremaud, Prof. Hien Tran, Prof. Ralph Smith
PublisherNCSU
Source SetsNorth Carolina State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://www.lib.ncsu.edu/theses/available/etd-07302007-145144/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dis sertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0018 seconds