One of the concerns in the field of statistics is the presence of missing data, which leads to bias in parameter estimation and inaccurate results. However, the multiple imputation procedure is a remedy for handling missing data. This study looked at the best multiple imputation methods used to handle mixed variable datasets with different sample sizes and variability along with different levels of missingness. The study employed the predictive mean matching, classification and regression trees, and the random forest imputation methods. For each dataset, the multiple regression parameter estimates for the complete datasets were compared to the multiple regression parameter estimates found with the imputed dataset. The results showed that the random forest imputation method was the best for mostly a sample of 150 and 500 irrespective of the variability. The classification and regression tree imputation methods worked best mostly on sample of 30 irrespective of the variability.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5445 |
Date | 01 August 2021 |
Creators | Afari, Kyei |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0023 seconds