Return to search

Apprentissage rapide adapté aux spécificités de l'utilisateur : application à l'extraction d'informations d'images de télédétection

Le but des systèmes de recherche d'images est de diriger rapidement l'utilisateur vers des contenus qui sont pertinents par rapport à la requête qu'il a formulée. Après une présentation de la problématique et un état d'art du domaine, cette thèse présente nos contributions dans le cadre de l'apprentissage avec très peu d'exemples qui est propre à l'imagerie satellitaire. Ces contributions se situent principalement autour de l'utilisation de méthodes semi-supervisées pour exploiter l'information contenue dans les données non-labellisées et pallier en quelque sorte la faiblesse et la non-exhaustivité des bases d'apprentissage. Nous présentons deux scénarios d'utilisation de méthodes semi-supervisées. Le premier se place dans le cadre d'un système d'annotation automatique d'images. Le but est alors de détecter les structures inconnues, c'est à dire les ensembles cohérents de données qui ne sont pas représentées dans la base d'apprentissage et ainsi de guider l'utilisateur dans son exploration de la base. Le second scénario concerne les systèmes de recherche interactive d'images. L'idée est d'exploiter une structuration des données, sous la forme d'un clustering par exemple, pour accélérer l'apprentissage (i.e. minimiser le nombre d'itérations de feedback) dans le cadre d'un système avec boucle de pertinence. La nouveauté de nos contributions se situe autour du fait que la plupart des méthodes semi-supervisées ne permettent pas de travailler avec de gros volumes de données comme on en rencontre en imagerie satellitaire ou alors ne sont pas temps-réel ce qui est problématique dans un système avec retour de pertinence où la fluidité des interactions avec l'utilisateur est à privilégier. Un autre problème qui justifie nos contributions est le fait que la plupart des méthodes semi-supervisées font l'hypothèse que la distribution des données labellisées suit la distribution des données non labellisées, hypothèse qui n'est pas vérifiée dans notre cas du fait de la non-exhaustivité des bases d'apprentissage et donc de l'existence de structures inconnues au niveau des données non labellisées. La dernière partie de cette thèse concerne un système de recherche d'objets à l'intérieur d'un schéma de type apprentissage actif. Une stratégie de type "coarse-to-fine" est introduite pour autoriser l'analyse de la base d'images à une taille de patch beaucoup plus "fine" tout en maintenant un nombre raisonnable d'évaluations de la fonction de décision du classificateur utilisé à chaque itération de la boucle d'apprentissage actif. L'idée est d' élaguer de grandes parties de la base de données à une échelle d'analyse dite "grossière'', afin de réserver un traitement plus complexe et plus coûteux sur des zones restreintes et plus prometteuses des images.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00662747
Date26 September 2011
CreatorsBlanchart, Pierre
PublisherTélécom ParisTech
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds