Return to search

Software Architecture Recovery based on Pattern Matching

Pattern matching approaches in reverse engineering aim to incorporate domain knowledge and system documentation in the software architecture extraction process, hence provide a user/tool collaborative environment for architectural design recovery. This thesis presents a model and an environment for recovering the high level design of legacy software systems based on user defined architectural patterns and graph matching techniques.
In the proposed model, a high-level view of a software system in terms of the system components and their interactions is represented as a query, using a description language. A query is mapped onto a pattern-graph, where a module and its interactions with other modules are represented as a group of graph-nodes and a group of graph-edges, respectively. Interaction constraints can be modeled by the description language as a part of the query. Such a pattern-graph is applied against an entity-relation graph that represents the information extracted from the source code of the software system. An approximate graph matching process performs a series of graph edit operations (i. e. , node/edge insertion/deletion) on the pattern-graph and uses a ranking mechanism based on data mining association to obtain a sub-optimal solution. The obtained solution corresponds to an extracted architecture that complies with the given query.
An interactive prototype toolkit implemented as part of this thesis provides an environment for architecture recovery in two levels. First the system is decomposed into a number of subsystems of files. Second each subsystem can be decomposed into a number of modules of functions, datatypes, and variables.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/1122
Date January 2003
CreatorsSartipi, Kamran
PublisherUniversity of Waterloo
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatapplication/pdf, 1813683 bytes, application/pdf
RightsCopyright: 2003, Sartipi, Kamran. All rights reserved.

Page generated in 0.0023 seconds