Le but de la classification est de partager des ensembles de données en sous-ensembles les plus homogènes possibles, c'est-à-dire que les membres d'une classe doivent plus se ressembler entre eux qu'aux membres des autres classes. Le problème se complique lorsque le statisticien souhaite définir des groupes à la fois sur les individus et sur les variables. Le modèle des blocs latents définit une loi pour chaque croisement de classe d'objets et de classe de variables, et les observations sont supposées indépendantes conditionnellement au choix de ces classes. Toutefois, il est impossible de factoriser la loi jointe des labels empêchant le calcul de la logvraisemblance et l'utilisation de l'algorithme EM. Plusieurs méthodes et critères existent pour retrouver ces partitions, certains fréquentistes, d'autres bayésiens, certains stochastiques, d'autres non. Dans cette thèse, nous avons d'abord proposé des conditions suffisantes pour obtenir l'identifiabilité. Dans un second temps, nous avons étudié deux algorithmes proposés pour contourner le problème de l'algorithme EM : VEM de Govaert et Nadif (2008) et SEM-Gibbs de Keribin, Celeux et Govaert (2010). En particulier, nous avons analysé la combinaison des deux et mis en évidence des raisons pour lesquelles les algorithmes dégénèrent (terme utilisé pour dire qu'ils renvoient des classes vides). En choisissant des lois a priori judicieuses, nous avons ensuite proposé une adaptation bayésienne permettant de limiter ce phénomène. Nous avons notamment utilisé un échantillonneur de Gibbs dont nous proposons un critère d'arrêt basé sur la statistique de Brooks-Gelman (1998). Nous avons également proposé une adaptation de l'algorithme Largest Gaps (Channarond et al. (2012)). En reprenant leurs démonstrations, nous avons démontré que les estimateurs des labels et des paramètres obtenus sont consistants lorsque le nombre de lignes et de colonnes tendent vers l'infini. De plus, nous avons proposé une méthode pour sélectionner le nombre de classes en ligne et en colonne dont l'estimation est également consistante à condition que le nombre de ligne et de colonne soit très grand. Pour estimer le nombre de classes, nous avons étudié le critère ICL (Integrated Completed Likelihood) dont nous avons proposé une forme exacte. Après avoir étudié l'approximation asymptotique, nous avons proposé un critère BIC (Bayesian Information Criterion) puis nous conjecturons que les deux critères sélectionnent les mêmes résultats et que ces estimations seraient consistantes ; conjecture appuyée par des résultats théoriques et empiriques. Enfin, nous avons comparé les différentes combinaisons et proposé une méthodologie pour faire une analyse croisée de données. / Classification aims at sharing data sets in homogeneous subsets; the observations in a class are more similar than the observations of other classes. The problem is compounded when the statistician wants to obtain a cross classification on the individuals and the variables. The latent block model uses a law for each crossing object class and class variables, and observations are assumed to be independent conditionally on the choice of these classes. However, factorizing the joint distribution of the labels is impossible, obstructing the calculation of the log-likelihood and the using of the EM algorithm. Several methods and criteria exist to find these partitions, some frequentist ones, some bayesian ones, some stochastic ones... In this thesis, we first proposed sufficient conditions to obtain the identifiability of the model. In a second step, we studied two proposed algorithms to counteract the problem of the EM algorithm: the VEM algorithm (Govaert and Nadif (2008)) and the SEM-Gibbs algorithm (Keribin, Celeux and Govaert (2010)). In particular, we analyzed the combination of both and highlighted why the algorithms degenerate (term used to say that it returns empty classes). By choosing priors wise, we then proposed a Bayesian adaptation to limit this phenomenon. In particular, we used a Gibbs sampler and we proposed a stopping criterion based on the statistics of Brooks-Gelman (1998). We also proposed an adaptation of the Largest Gaps algorithm (Channarond et al. (2012)). By taking their demonstrations, we have shown that the labels and parameters estimators obtained are consistent when the number of rows and columns tend to infinity. Furthermore, we proposed a method to select the number of classes in row and column, the estimation provided is also consistent when the number of row and column is very large. To estimate the number of classes, we studied the ICL criterion (Integrated Completed Likelihood) whose we proposed an exact shape. After studying the asymptotic approximation, we proposed a BIC criterion (Bayesian Information Criterion) and we conjecture that the two criteria select the same results and these estimates are consistent; conjecture supported by theoretical and empirical results. Finally, we compared the different combinations and proposed a methodology for co-clustering.
Identifer | oai:union.ndltd.org:theses.fr/2014PA112238 |
Date | 30 September 2014 |
Creators | Brault, Vincent |
Contributors | Paris 11, Celeux, Gilles |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0023 seconds