Title: Nonconvex stochastic programming problems - formulations, sample approximations and stability Author: RNDr. Martin Branda Author's e-mail address: branda@karlin.mff.cuni.cz Supervisor: Doc. RNDr. Petr Lachout, CSc. Supervisor's e-mail address: lachout@karlin.mff.cuni.cz Abstract: We deal with problems where integer variables may appear, hence no assumptions on convexity are made throughout this thesis. The goal of Chapter 2 is to introduce stochastic programming problems and to outline the most important tasks connected with solving the problems. In Chapter 3, we compare basic formulations of static stochastic programming problems with chance constraints, with integrated chance constraints and with penalties in the objective function. We show that the problems are asymptotically equivalent under mild conditions. We discuss solving the problems using sample approximation techniques and extend some results on rates of convergence. All the formulations and corresponding sample approximations are compared on an investment problem with real features with Value at Risk constraint, integer allocations and transaction costs. Then, stability of financial decision models where two-stage mixed-integer value function appears as a loss variable is studied. In Chapter 4, we study qualitative properties of the...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:297723 |
Date | January 2010 |
Creators | Branda, Martin |
Contributors | Lachout, Petr, Kaňková, Vlasta, H.van der Vlerk, Maarten |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0784 seconds