[ES] Las enfermedades cardiovasculares son una de las causas más predominantes de muerte y comorbilidad en los países desarrollados, por ello se han realizado grandes inversiones en las últimas décadas para producir herramientas de diagnóstico y aplicaciones de tratamiento de enfermedades cardíacas de alta calidad. Una de las mejores herramientas de diagnóstico para caracterizar el corazón ha sido la imagen por resonancia magnética (IRM) gracias a sus capacidades de alta resolución tanto en la dimensión espacial como temporal, lo que permite generar imágenes dinámicas del corazón para un diagnóstico preciso. Las dimensiones del ventrículo izquierdo y la fracción de eyección derivada de ellos son los predictores más potentes de morbilidad y mortalidad cardiaca y su cuantificación tiene connotaciones importantes para el manejo y tratamiento de los pacientes. De esta forma, la IRM cardiaca es la técnica de imagen más exacta para la valoración del ventrículo izquierdo. Para obtener un diagnóstico preciso y rápido, se necesita un cálculo fiable de biomarcadores basados en imágenes a través de software de procesamiento de imágenes. Hoy en día la mayoría de las herramientas empleadas se basan en sistemas semiautomáticos de Diagnóstico Asistido por Computador (CAD) que requieren que el experto clínico interactúe con él, consumiendo un tiempo valioso de los profesionales cuyo objetivo debería ser únicamente interpretar los resultados. Un cambio de paradigma está comenzando a entrar en el sector médico donde los sistemas CAD completamente automáticos no requieren ningún tipo de interacción con el usuario. Estos sistemas están diseñados para calcular los biomarcadores necesarios para un diagnóstico correcto sin afectar el flujo de trabajo natural del médico y pueden iniciar sus cálculos en el momento en que se guarda una imagen en el sistema de archivo informático del hospital.
Los sistemas CAD automáticos, aunque se consideran uno de los grandes avances en el mundo de la radiología, son extremadamente difíciles de desarrollar y dependen de tecnologías basadas en inteligencia artificial (IA) para alcanzar estándares médicos. En este contexto, el aprendizaje profundo (DL) ha surgido en la última década como la tecnología más exitosa para abordar este problema. Más específicamente, las redes neuronales convolucionales (CNN) han sido una de las técnicas más exitosas y estudiadas para el análisis de imágenes, incluidas las imágenes médicas. En este trabajo describimos las principales aplicaciones de CNN para sistemas CAD completamente automáticos para ayudar en la rutina de diagnóstico clínico mediante resonancia magnética cardíaca. El trabajo cubre los puntos principales a tener en cuenta para desarrollar tales sistemas y presenta diferentes resultados de alto impacto dentro del uso de CNN para resonancia magnética cardíaca, separados en tres proyectos diferentes que cubren su aplicación en la rutina clínica de diagnóstico, cubriendo los problemas de la segmentación, estimación automática de biomarcadores con explicabilidad y la detección de eventos.
El trabajo completo presentado describe enfoques novedosos y de alto impacto para aplicar CNN al análisis de resonancia magnética cardíaca. El trabajo proporciona varios hallazgos clave, permitiendo varias formas de integración de esta reciente y creciente tecnología en sistemas CAD completamente automáticos que pueden producir resultados altamente precisos, rápidos y confiables. Los resultados descritos mejorarán e impactarán positivamente el flujo de trabajo de los expertos clínicos en un futuro próximo. / [CA] Les malalties cardiovasculars són una de les causes de mort i comorbiditat més predominants als països desenvolupats, s'han fet grans inversions en les últimes dècades per tal de produir eines de diagnòstic d'alta qualitat i aplicacions de tractament de malalties cardíaques. Una de les tècniques millor provades per caracteritzar el cor ha estat la imatge per ressonància magnètica (IRM), gràcies a les seves capacitats d'alta resolució tant en dimensions espacials com temporals, que permeten generar imatges dinàmiques del cor per a un diagnòstic precís. Les dimensions del ventricle esquerre i la fracció d'ejecció que se'n deriva són els predictors més potents de morbiditat i mortalitat cardíaca i la seva quantificació té connotacions importants per al maneig i tractament dels pacients. D'aquesta manera, la IRM cardíaca és la tècnica d'imatge més exacta per a la valoració del ventricle esquerre. Per obtenir un diagnòstic precís i ràpid, es necessita un càlcul fiable de biomarcadors basat en imatges mitjançant un programa de processament d'imatges. Actualment, la majoria de les ferramentes emprades es basen en sistemes semiautomàtics de Diagnòstic Assistit per ordinador (CAD) que requereixen que l'expert clínic interaccioni amb ell, consumint un temps valuós dels professionals, l'objectiu dels quals només hauria de ser la interpretació dels resultats. S'està començant a introduir un canvi de paradigma al sector mèdic on els sistemes CAD totalment automàtics no requereixen cap tipus d'interacció amb l'usuari. Aquests sistemes estan dissenyats per calcular els biomarcadors necessaris per a un diagnòstic correcte sense afectar el flux de treball natural del metge i poden iniciar els seus càlculs en el moment en què es deixa la imatge dins del sistema d'arxius hospitalari.
Els sistemes CAD automàtics, tot i ser molt considerats com un dels propers grans avanços en el món de la radiologia, són extremadament difícils de desenvolupar i depenen de les tecnologies d'Intel·ligència Artificial (IA) per assolir els estàndards mèdics. En aquest context, l'aprenentatge profund (DL) ha sorgit durant l'última dècada com la tecnologia amb més èxit per abordar aquest problema. Més concretament, les xarxes neuronals convolucionals (CNN) han estat una de les tècniques més utilitzades i estudiades per a l'anàlisi d'imatges, inclosa la imatge mèdica. En aquest treball es descriuen les principals aplicacions de CNN per a sistemes CAD totalment automàtics per ajudar en la rutina de diagnòstic clínic mitjançant ressonància magnètica cardíaca. El treball recull els principals punts a tenir en compte per desenvolupar aquest tipus de sistemes i presenta diferents resultats d'impacte en l'ús de CNN a la ressonància magnètica cardíaca, tots separats en tres projectes principals diferents, cobrint els problemes de la segmentació, estimació automàtica de *biomarcadores amb *explicabilidad i la detecció d'esdeveniments.
El treball complet presentat descriu enfocaments nous i potents per aplicar CNN a l'anàlisi de ressonància magnètica cardíaca. El treball proporciona diversos descobriments clau, que permeten la integració de diverses maneres d'aquesta tecnologia nova però en constant creixement en sistemes CAD totalment automàtics que podrien produir resultats altament precisos, ràpids i fiables. Els resultats descrits milloraran i afectaran considerablement el flux de treball dels experts clínics en un futur proper. / [EN] Cardiovascular diseases are one of the most predominant causes of death and comorbidity in developed countries, as such heavy investments have been done in recent decades in order to produce high quality diagnosis tools and treatment applications for cardiac diseases. One of the best proven tools to characterize the heart has been magnetic resonance imaging (MRI), thanks to its high-resolution capabilities in both spatial and temporal dimensions, allowing to generate dynamic imaging of the heart that enable accurate diagnosis. The dimensions of the left ventricle and the ejection fraction derived from them are the most powerful predictors of cardiac morbidity and mortality, and their quantification has important connotations for the management and treatment of patients. Thus, cardiac MRI is the most accurate imaging technique for left ventricular assessment. In order to get an accurate and fast diagnosis, reliable image-based biomarker computation through image processing software is needed. Nowadays most of the employed tools rely in semi-automatic Computer-Aided Diagnosis (CAD) systems that require the clinical expert to interact with it, consuming valuable time from the professionals whose aim should only be at interpreting results. A paradigm shift is starting to get into the medical sector where fully automatic CAD systems do not require any kind of user interaction. These systems are designed to compute any required biomarkers for a correct diagnosis without impacting the physician natural workflow and can start their computations the moment an image is saved within a hospital archive system.
Automatic CAD systems, although being highly regarded as one of next big advances in the radiology world, are extremely difficult to develop and rely on Artificial Intelligence (AI) technologies in order to reach medical standards. In this context, Deep learning (DL) has emerged in the past decade as the most successful technology to address this problem. More specifically, convolutional neural networks (CNN) have been one of the most successful and studied techniques for image analysis, including medical imaging. In this work we describe the main applications of CNN for fully automatic CAD systems to help in the clinical diagnostics routine by means of cardiac MRI. The work covers the main points to take into account in order to develop such systems and presents different impactful results within the use of CNN to cardiac MRI, all separated in three different main projects covering the segmentation, automatic biomarker estimation with explainability and event detection problems.
The full work presented describes novel and powerful approaches to apply CNN to cardiac MRI analysis. The work provides several key findings, enabling the integration in several ways of this novel but non-stop growing technology into fully automatic CAD systems that could produce highly accurate, fast and reliable results. The results described will greatly improve and impact the workflow of the clinical experts in the near future. / Pérez Pelegrí, M. (2023). Applications of Deep Leaning on Cardiac MRI: Design Approaches for a Computer Aided Diagnosis [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/192988
Identifer | oai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/192988 |
Date | 27 April 2023 |
Creators | Pérez Pelegrí, Manuel |
Contributors | López Lereu, María Pilar, Monmeneu Menadas, José Vicente, Moratal Pérez, David, Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica |
Publisher | Universitat Politècnica de València |
Source Sets | Universitat Politècnica de València |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion |
Rights | http://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess |
Page generated in 0.0036 seconds