Return to search

Study of GCN2 in Arabidopsis thaliana.

Li, Man Wah. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 109-119). / Abstracts in English and Chinese. / Thesis Committee --- p.I / Statement --- p.II / Abstract --- p.III / 摘要 --- p.V / Acknowledgements --- p.VI / Abbreviations --- p.VIII / Abbreviations of Chemicals --- p.X / List of Tables --- p.XI / List of Figures --- p.XII / Table of Contents --- p.XIII / Chapter Chapter 1 --- Literature Review --- p.1 / Chapter 1.1 --- General amino acid control in yeast --- p.1 / Chapter 1.2 --- Mammalian eIF2α kinases --- p.7 / Chapter 1.2.1 --- Heme-regulated inhibitor kinase (EIF2AK1/HRI) --- p.7 / Chapter 1.2.2 --- Protein kinase dsRNA-dependent (EIF2AK2/PKR) --- p.8 / Chapter 1.2.3 --- PKR-like ER kinase (EIF2AK3/PERK) --- p.9 / Chapter 1.2.4 --- General control non-repressible 2 (EIF2AK4/GCN2) --- p.10 / Chapter 1.2.5 --- Activating transcription factor 4 (ATF4) --- p.11 / Chapter 1.3 --- Plant General Amino Acid Control --- p.12 / Chapter 1.3.1 --- Studies of the homolog of GCN2 in Arabidopsis thaliana --- p.12 / Chapter 1.3.2 --- Studies of the homolog of other eIF2a kinase in plant --- p.14 / Chapter 1.3.3 --- Studies of the homolog of other GAAC components --- p.14 / Chapter 1.4 --- Previous works in our lab --- p.15 / Chapter 1.5 --- Hypothesis and Objectives --- p.17 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Materials --- p.18 / Chapter 2.1.1 --- "Bacterial cultures, plant materials and vectors" --- p.18 / Chapter 2.1.2 --- Primers --- p.21 / Chapter 2.1.3 --- Commercial kits --- p.25 / Chapter 2.1.4 --- "Buffer, solution, gel and medium" --- p.25 / Chapter 2.1.5 --- "Chemicals, reagents and consumables" --- p.25 / Chapter 2.1.6 --- Enzymes --- p.25 / Chapter 2.1.7 --- Antibodies --- p.25 / Chapter 2.1.8 --- Equipments and facilities --- p.25 / Chapter 2.2 --- Methods --- p.26 / Chapter 2.2.1 --- Growth conditions of Arabidopsis thaliana --- p.26 / Chapter 2.2.1.1 --- Surface sterilize of Arabidopsis thaliana seed --- p.26 / Chapter 2.2.1.2 --- Growing of Arabidopsis thaliana --- p.26 / Chapter 2.2.1.3 --- Treatment of Arabidopsis seedling --- p.26 / Chapter 2.2.2 --- Basic molecular techniques --- p.27 / Chapter 2.2.2.1 --- Liquid culture of Escherichia coli --- p.27 / Chapter 2.2.2.2 --- Preparation of plasmid DNA --- p.27 / Chapter 2.2.2.3 --- Restriction digestion --- p.27 / Chapter 2.2.2.4 --- DNA purification --- p.28 / Chapter 2.2.2.5 --- DNA gel electrophoresis --- p.28 / Chapter 2.2.2.6 --- DNA ligation --- p.29 / Chapter 2.2.2.7 --- CaCl2 mediated E. coli transformation --- p.29 / Chapter 2.2.2.8 --- Preparation of DNA fragment for cloning --- p.29 / Chapter 2.2.2.9 --- PCR reaction for screening positive E. coli transformants --- p.30 / Chapter 2.2.2.10 --- DNA sequencing --- p.30 / Chapter 2.2.2.11 --- RNA extraction from plant tissue with tRNA --- p.31 / Chapter 2.2.2.12 --- Extraction of RNA without tRNA --- p.31 / Chapter 2.2.2.13 --- cDNA synthesis --- p.32 / Chapter 2.2.2.14 --- SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) --- p.33 / Chapter 2.2.2.15 --- Western blotting --- p.33 / Chapter 2.2.3 --- Sub-cloning of AtGCN2 --- p.34 / Chapter 2.2.3.1 --- Sub-cloning full length AtGCN2 into pMAL-c2 --- p.36 / Chapter 2.2.3.2 --- Sub-cloning of the N-terminal sequence of AtGCN2 into pMAL-c2 --- p.38 / Chapter 2.2.3.3 --- Sub-cloning of the C-terminal sequence of AtGCN2 into pMAL-c2 --- p.38 / Chapter 2.2.4 --- Cloning of the eIF2α candidates for the in vitro assay --- p.41 / Chapter 2.2.4.1 --- Cloning of At2g40290 (putative eIF2α candidate) --- p.41 / Chapter 2.2.4.2 --- Cloning of At5g05470 (putative eIF2α candidate) into pBlueScript KS II + --- p.43 / Chapter 2.2.4.3 --- Sub-cloning of At5g05470 into pGEX-4T-1 --- p.43 / Chapter 2.2.4 --- Expression and purification of fusion proteins --- p.45 / Chapter 2.2.5 --- Expression of fusion proteins in E. coli --- p.45 / Chapter 2.2.5.2 --- Extraction of E. coli soluble proteins --- p.45 / Chapter 2.2.5.3 --- Purification of GST tagged fusion protein --- p.46 / Chapter 2.2.5.4 --- Purification of MBP tagged fusion protein --- p.46 / Chapter 2.2.5.5 --- Concentration of purified fusion proteins --- p.46 / Chapter 2.2.5.6 --- MS/MS verification of purified fusion proteins --- p.47 / Chapter 2.2.6 --- Gel mobility shift assay --- p.47 / Chapter 2.2.6.1 --- Synthesis of short biotinylated RNA --- p.47 / Chapter 2.2.6.2 --- Ligation of short biotinylated RNA with tRNA --- p.48 / Chapter 2.2.6.3 --- Gel mobility shift assay --- p.48 / Chapter 2.2.6.4 --- Blotting of the sample on to nitrocellulose membrane --- p.48 / Chapter 2.2.6.5 --- Detection of the tRNA on the membrane --- p.49 / Chapter 2.2.6.6 --- Detection of the MBP fusion proteins on the membrane --- p.49 / Chapter 2.2.7 --- In vitro kinase assay of AtGCN2 --- p.49 / Chapter 2.2.8 --- In vitro translation inhibition assay --- p.50 / Chapter 2.2.8.1 --- In vitro transcription of HA mRNA --- p.50 / Chapter 2.2.8.2 --- In vitro translation --- p.51 / Chapter 2.2.8.3 --- Detection of the protein dot blot --- p.51 / Chapter 2.2.9 --- Gene expression analysis by real time PCR --- p.52 / Chapter 2.2.10 --- Total seed nitrogen analysis --- p.53 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Blast search results suggested that AtGCN2 may be the sole eIF2α kinase in Arabidopsis thaliana --- p.54 / Chapter 3.2 --- Existence of two eIF2α candidates in Arabidopsis thaliana genome --- p.59 / Chapter 3.3 --- Fusion proteins were successfully expressed and purified --- p.63 / Chapter 3.4 --- C-terminal of AtGCN2 has a higher affinity toward tRNA than rRNA --- p.67 / Chapter 3.5 --- Both eIF2α candidates can be phosphorylated by full length AtGCN2 in vitro --- p.70 / Chapter 3.6 --- AtGCN2 can inhibit translation in vitro --- p.72 / Chapter 3.7 --- Overexpression of AtGCN2 did not affect expression of selected genes --- p.74 / Chapter 3.8 --- Overexpression of AtGCN2 did not affect seed nitrogen content and C:N ratio under normal growth conditions --- p.83 / Chapter Chapter 4 --- Discussion --- p.85 / Chapter 4.1 --- Existing evidence supported that AtGCN2 is the sole eIF2α kinase in Arabidopsis thaliana --- p.85 / Chapter 4.2 --- Kinase activities of AtGCN2 and its two substrates in Arabidopsis --- p.86 / Chapter 4.3 --- C-terminal binds tRNA in the gel mobility shift assay --- p.88 / Chapter 4.4 --- Overexpression of AtGCN2 did not affect gene expression of the transgenic lines under nitrogen starvation and azerserine treatment --- p.90 / Chapter 4.5 --- Overexpression of AtGCN2 did not alter the seed nitrogen content --- p.91 / Chapter 4.6 --- Existence of GCN4 and ATF4 in plant --- p.92 / Chapter 4.7 --- Alternative model without GCN4 and ATF4 homolog --- p.93 / Chapter 4.8 --- Possible application of the in vitro kinase assay --- p.94 / Chapter 4.9 --- Possible application of the in vitro translation inhibition analysis platform in future study --- p.95 / Chapter Chapter 5 --- Conclusion and Future Prospective --- p.97 / Appendices / Appendix I Commercial kits used in this project --- p.98 / "Appendix II Buffer, solution, gel and medium" --- p.99 / "Appendix III Chemicals, reagents and consumables" --- p.102 / Appendix IV Enzymes --- p.103 / Appendix V Antibodies --- p.104 / Appendix VI Equipments and facilities --- p.105 / Appendix VII Supplementary Data --- p.106 / Appendix VIII Amplification efficiency of real time primers --- p.108 / References --- p.109

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326665
Date January 2009
ContributorsLi, Man Wah., Chinese University of Hong Kong Graduate School. Division of Molecular Biotechnology.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xvi, 119 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0023 seconds